IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i2d10.1007_s11269-015-1185-6.html
   My bibliography  Save this article

Impact of Human Intervention and Climate Change on Natural Flow Regime

Author

Listed:
  • Neha Mittal

    (University of Leeds)

  • Ajay Gajanan Bhave

    (London School of Economics and Political Science)

  • Ashok Mishra

    (Indian Institute of Technology Kharagpur)

  • Rajendra Singh

    (Indian Institute of Technology Kharagpur)

Abstract

According to the ‘natural flow paradigm’, any departure from the natural flow condition will alter the river ecosystem. River flow regimes have been modified by anthropogenic interventions and climate change is further expected to affect the biotic interactions and the distribution of stream biota by altering streamflow. This study aims to evaluate the hydrologic alteration caused by dam construction and climatic changes in a mesoscale river basin, which is prone to both droughts and monsoonal floods. To analyse the natural flow regime, 15 years of observed streamflow (1950–1965) prior to dam construction is used. Future flow regime is simulated by a calibrated hydrological model Soil and Water Assessment Tool (SWAT), using ensemble of four high resolution (~25 km) Regional Climate Model (RCM) simulations for the near future (2021–2050) based on the SRES A1B scenario. Finally, to quantify the hydrological alterations of different flow characteristics, the Indicators of Hydrological Alteration (IHA) program based on the Range of Variability Approach (RVA) is used. This approach enables the assessment of ecologically sensitive streamflow parameters for the pre- and post-impact periods in the regions where availability of long-term ecological data is a limiting factor. Results indicate that flow variability has been significantly reduced due to dam construction with high flows being absorbed and pre-monsoon low flows being enhanced by the reservoir. Climate change alone may reduce high peak flows while a combination of dam and climate change may significantly reduce variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. We find that, in the Kangsabati River basin, influence of dam is greater than that of the climate change, thereby emphasizing the significance of direct human intervention.

Suggested Citation

  • Neha Mittal & Ajay Gajanan Bhave & Ashok Mishra & Rajendra Singh, 2016. "Impact of Human Intervention and Climate Change on Natural Flow Regime," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 685-699, January.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:2:d:10.1007_s11269-015-1185-6
    DOI: 10.1007/s11269-015-1185-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-015-1185-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-015-1185-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Meijer & W. Krogt & E. Beek, 2012. "A New Approach to Incorporating Environmental Flow Requirements in Water Allocation Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1271-1286, March.
    2. Fai Fung & Glenn Watts & Ana Lopez & Harriet Orr & Mark New & Chris Extence, 2013. "Using Large Climate Ensembles to Plan for the Hydrological Impact of Climate Change in the Freshwater Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(4), pages 1063-1084, March.
    3. Neha Mittal & Ashok Mishra & Rajendra Singh, 2013. "Combining climatological and participatory approaches for assessing changes in extreme climatic indices at regional scale," Climatic Change, Springer, vol. 119(3), pages 603-615, August.
    4. Jian-Ping Suen, 2011. "Determining the Ecological Flow Regime for Existing Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 817-835, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naveed Ahmed & Genxu Wang & Martijn J. Booij & Sun Xiangyang & Fiaz Hussain & Ghulam Nabi, 2022. "Separation of the Impact of Landuse/Landcover Change and Climate Change on Runoff in the Upstream Area of the Yangtze River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 181-201, January.
    2. Youxin Wang & Tao Peng & Qingxia Lin & Vijay P. Singh & Xiaohua Dong & Chen Chen & Ji Liu & Wenjuan Chang & Gaoxu Wang, 2022. "A New Non-stationary Hydrological Drought Index Encompassing Climate Indices and Modified Reservoir Index as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2433-2454, May.
    3. Tianshi Pan & Lijun Zuo & Zengxiang Zhang & Xiaoli Zhao & Feifei Sun & Zijuan Zhu & Yingchun Liu, 2020. "Impact of Land Use Change on Water Conservation: A Case Study of Zhangjiakou in Yongding River," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    4. Hossein Tabari & Meron Teferi Taye & Charles Onyutha & Patrick Willems, 2017. "Decadal Analysis of River Flow Extremes Using Quantile-Based Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3371-3387, September.
    5. Wenxian Guo & Jianwen Hu & Hongxiang Wang, 2021. "Analysis of Runoff Variation Characteristics and Influencing Factors in the Wujiang River Basin in the Past 30 Years," IJERPH, MDPI, vol. 19(1), pages 1-16, December.
    6. Lei Zou & Jun Xia & Dunxian She, 2018. "Analysis of Impacts of Climate Change and Human Activities on Hydrological Drought: a Case Study in the Wei River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1421-1438, March.
    7. Kairong Lin & Youqin Lin & Pan Liu & Yanhu He & Xinjun Tu, 2016. "Considering the Order and Symmetry to Improve the Traditional RVA for Evaluation of Hydrologic Alteration of River Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5501-5516, November.
    8. Ruqayah Mohammed & Miklas Scholz & Mohammad Zounemat-Kermani, 2017. "Temporal Hydrologic Alterations Coupled with Climate Variability and Drought for Transboundary River Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1489-1502, March.
    9. Han-Chung Yang & Jian-Ping Suen & Shih-Kai Chou, 2016. "Estimating the Ungauged Natural Flow Regimes for Environmental Flow Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4571-4584, October.
    10. Ina Pohle & Anne Gädeke & Sabine Schümberg & Christoph Hinz & Hagen Koch, 2019. "Management Influences on Stream-Flow Variability in the Past and Under Potential Climate Change in a Central European Mining Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5191-5206, December.
    11. Ruqayah Mohammed & Miklas Scholz, 2019. "Climate Variability Impact on the Spatiotemporal Characteristics of Drought and Aridityin Arid and Semi-Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5015-5033, December.
    12. Akanksha Balha & Amit Singh & Suneel Pandey & Reetesh Kumar & Javed Mallick & Chander Kumar Singh, 2023. "Assessing the Impact of Land-Use Dynamics to Predict the Changes in Hydrological Variables Using Effective Impervious Area (EIA)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3999-4014, August.
    13. Stefano Casadei & Arnaldo Pierleoni & Michele Bellezza, 2018. "Sustainability of Water Withdrawals in the Tiber River Basin (Central Italy)," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    14. Kun-xia Yu & Lihua Xiong & Peng Li & Zhanbin Li & Xiang Zhang & Qian Sun, 2018. "Analyzing the Impacts of Climatic and Physiographic Factors on Low Flow Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 881-896, February.
    15. Dawid Szatten & Michał Habel & Zygmunt Babiński, 2021. "Influence of Hydrologic Alteration on Sediment, Dissolved Load and Nutrient Downstream Transfer Continuity in a River: Example Lower Brda River Cascade Dams (Poland)," Resources, MDPI, vol. 10(7), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neha Mittal & Ajay Bhave & Ashok Mishra & Rajendra Singh, 2016. "Impact of Human Intervention and Climate Change on Natural Flow Regime," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 685-699, January.
    2. Changwen Li & Ling Kang, 2014. "A New Modified Tennant Method with Spatial-Temporal Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4911-4926, November.
    3. Nien-Sheng Hsu & Chung-Hsiang Chiang & Wen-Ming Cheng & Chih-Chiang Wei, 2012. "Study on the Trade-Off between Ecological Base Flow and Optimized Water Supply," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3095-3112, September.
    4. Wang, Chao & Sun, Qiyuan & Wang, Peifang & Hou, Jun & Qu, Aiyu, 2013. "An optimization approach to runoff regulation for potential estuarine eutrophication control: Model development and a case study of Yangtze Estuary, China," Ecological Modelling, Elsevier, vol. 251(C), pages 199-210.
    5. Chunxue Yu & Xinan Yin & Zhifeng Yang & Zhi Dang, 2019. "Sustainable Water Resource Management of Regulated Rivers under Uncertain Inflow Conditions Using a Noisy Genetic Algorithm," IJERPH, MDPI, vol. 16(5), pages 1-21, March.
    6. Christelle Legay & Geneviève Cloutier & Salem Chakhar & Florent Joerin & Manuel Rodriguez, 2015. "Estimation of urban water supply issues at the local scale: a participatory approach," Climatic Change, Springer, vol. 130(4), pages 491-503, June.
    7. Zhandong Sun & Qun Huang & Christian Opp & Thomas Hennig & Ulf Marold, 2012. "Impacts and Implications of Major Changes Caused by the Three Gorges Dam in the Middle Reaches of the Yangtze River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3367-3378, September.
    8. Erik Porse & Samuel Sandoval-Solis & Belize Lane, 2015. "Integrating Environmental Flows into Multi-Objective Reservoir Management for a Transboundary, Water-Scarce River Basin: Rio Grande/Bravo," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2471-2484, June.
    9. Han-Chung Yang & Jian-Ping Suen & Shih-Kai Chou, 2016. "Estimating the Ungauged Natural Flow Regimes for Environmental Flow Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4571-4584, October.
    10. Qun Huang & Zhandong Sun & Christian Opp & Tom Lotz & Jiahu Jiang & Xijun Lai, 2014. "Hydrological Drought at Dongting Lake: Its Detection, Characterization, and Challenges Associated With Three Gorges Dam in Central Yangtze, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5377-5388, December.
    11. Abu Reza Md. Towfiqul Islam & Swapan Talukdar & Shumona Akhter & Kutub Uddin Eibek & Md. Mostafizur Rahman & Swades Pal & Mohd Waseem Naikoo & Atiqur Rahman & Amir Mosavi, 2022. "Assessing the Impact of the Farakka Barrage on Hydrological Alteration in the Padma River with Future Insight," Sustainability, MDPI, vol. 14(9), pages 1-26, April.
    12. Guofu Yuan & Xuchao Zhu & Xinzhai Tang & Tao Du & Xiaobo Yi, 2016. "A Species-Specific and spatially-Explicit Model for Estimating Vegetation Water Requirements in Desert Riparian Forest Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3915-3933, September.
    13. Shibao Lu & Wenting Cai & Wei Shao & Farhad Taghizadeh-Hesary & Muhammad Faisal & Hongbo Zhang & Yangang Xue, 2021. "Ecological Water Requirement in Upper and Middle Reaches of the Yellow River Based on Flow Components and Hydraulic Index," IJERPH, MDPI, vol. 18(20), pages 1-16, October.
    14. Enrique Morán-Tejeda & Jorge Lorenzo-Lacruz & Juan López-Moreno & Antonio Ceballos-Barbancho & Javier Zabalza & Sergio Vicente-Serrano, 2012. "Reservoir Management in the Duero Basin (Spain): Impact on River Regimes and the Response to Environmental Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2125-2146, June.
    15. Aihong Fu & Yi Wang & Zhaoxia Ye, 2020. "Quantitative Determination of Some Parameters in the Tennant Method and Its Application to Sustainability: A Case Study of the Yarkand River, Xinjiang, China," Sustainability, MDPI, vol. 12(9), pages 1-12, May.
    16. L Benini & M Antonellini & M Laghi & P. N. Mollema, 2016. "Assessment of Water Resources Availability and Groundwater Salinization in Future Climate and Land use Change Scenarios: A Case Study from a Coastal Drainage Basin in Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 731-745, January.
    17. Marco Turco & Antonella Sanna & Sixto Herrera & Maria-Carmen Llasat & José Gutiérrez, 2013. "Large biases and inconsistent climate change signals in ENSEMBLES regional projections," Climatic Change, Springer, vol. 120(4), pages 859-869, October.
    18. Gajanan Ramteke & R. Singh & C. Chatterjee, 2020. "Assessing Impacts of Conservation Measures on Watershed Hydrology Using MIKE SHE Model in the Face of Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4233-4252, October.
    19. Jenq-Tzong Shiau & Chian-You Huang, 2014. "Detecting Multi-Purpose Reservoir Operation Induced Time-Frequency Alteration Using Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3577-3590, September.
    20. Pierre Razurel & Lorenzo Gorla & Benoît Crouzy & Paolo Perona, 2016. "Non-proportional Repartition Rules Optimize Environmental Flows and Energy Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 207-223, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:2:d:10.1007_s11269-015-1185-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.