IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v10y2021i7p70-d587168.html
   My bibliography  Save this article

Influence of Hydrologic Alteration on Sediment, Dissolved Load and Nutrient Downstream Transfer Continuity in a River: Example Lower Brda River Cascade Dams (Poland)

Author

Listed:
  • Dawid Szatten

    (Institute of Geography, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland)

  • Michał Habel

    (Institute of Geography, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland)

  • Zygmunt Babiński

    (Institute of Geography, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland)

Abstract

Hydrologic alternation of river systems is an essential factor of human activity. Cascade-dammed waters are characterized by the disturbed outflow of material from the catchment. Changes in sediment, dissolved load and nutrient balance are among the base indicators of water resource monitoring. This research was based on the use of hydrological and water quality data (1984–2017) and the Indicators of Hydrologic Alteration (IHA) method to determine the influence of river regime changes on downstream transfer continuity of sediments and nutrients in the example of the Lower Brda river cascade dams (Poland). Two types of regimes were used: hydropeaking (1984–2000) and run–of–river (2001–2017). Using the IHA method and water quality data, a qualitative and quantitative relationship were demonstrated between changes of regime operation and sediment and nutrient balance. The use of sites above and below the cascade made it possible to determine sediment, dissolved load, and nutrient trapping and removing processes. Studies have shown that changes in operation regime influenced the supply chain and continuity of sediment and nutrient transport in cascade-dammed rivers. The conducted research showed that sustainable management of sediment and nutrient in the alternated catchment helps achieve good ecological status of the water.

Suggested Citation

  • Dawid Szatten & Michał Habel & Zygmunt Babiński, 2021. "Influence of Hydrologic Alteration on Sediment, Dissolved Load and Nutrient Downstream Transfer Continuity in a River: Example Lower Brda River Cascade Dams (Poland)," Resources, MDPI, vol. 10(7), pages 1-22, July.
  • Handle: RePEc:gam:jresou:v:10:y:2021:i:7:p:70-:d:587168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/10/7/70/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/10/7/70/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neha Mittal & Ajay Gajanan Bhave & Ashok Mishra & Rajendra Singh, 2016. "Impact of Human Intervention and Climate Change on Natural Flow Regime," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 685-699, January.
    2. Xiaoyan Wang & Tao Yang & Michel Wortmann & Pengfei Shi & Fred Hattermann & Anastasia Lobanova & Valentin Aich, 2017. "Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones," Climatic Change, Springer, vol. 141(3), pages 483-498, April.
    3. Neha Mittal & Ajay Bhave & Ashok Mishra & Rajendra Singh, 2016. "Impact of Human Intervention and Climate Change on Natural Flow Regime," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 685-699, January.
    4. Barbara Belletti & Carlos Garcia de Leaniz & Joshua Jones & Simone Bizzi & Luca Börger & Gilles Segura & Andrea Castelletti & Wouter van de Bund & Kim Aarestrup & James Barry & Kamila Belka & Arjan Be, 2020. "More than one million barriers fragment Europe’s rivers," Nature, Nature, vol. 588(7838), pages 436-441, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego Copetti, 2023. "Integration of Water Quantity/Quality Needs with Socio-Economical Issues: A Focus on Monitoring and Modelling," Resources, MDPI, vol. 12(5), pages 1-4, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youxin Wang & Tao Peng & Qingxia Lin & Vijay P. Singh & Xiaohua Dong & Chen Chen & Ji Liu & Wenjuan Chang & Gaoxu Wang, 2022. "A New Non-stationary Hydrological Drought Index Encompassing Climate Indices and Modified Reservoir Index as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2433-2454, May.
    2. Ina Pohle & Anne Gädeke & Sabine Schümberg & Christoph Hinz & Hagen Koch, 2019. "Management Influences on Stream-Flow Variability in the Past and Under Potential Climate Change in a Central European Mining Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5191-5206, December.
    3. Ruqayah Mohammed & Miklas Scholz & Mohammad Zounemat-Kermani, 2017. "Temporal Hydrologic Alterations Coupled with Climate Variability and Drought for Transboundary River Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1489-1502, March.
    4. Han-Chung Yang & Jian-Ping Suen & Shih-Kai Chou, 2016. "Estimating the Ungauged Natural Flow Regimes for Environmental Flow Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4571-4584, October.
    5. Lei Zou & Jun Xia & Dunxian She, 2018. "Analysis of Impacts of Climate Change and Human Activities on Hydrological Drought: a Case Study in the Wei River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1421-1438, March.
    6. Naveed Ahmed & Genxu Wang & Martijn J. Booij & Sun Xiangyang & Fiaz Hussain & Ghulam Nabi, 2022. "Separation of the Impact of Landuse/Landcover Change and Climate Change on Runoff in the Upstream Area of the Yangtze River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 181-201, January.
    7. Tianshi Pan & Lijun Zuo & Zengxiang Zhang & Xiaoli Zhao & Feifei Sun & Zijuan Zhu & Yingchun Liu, 2020. "Impact of Land Use Change on Water Conservation: A Case Study of Zhangjiakou in Yongding River," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    8. Ruqayah Mohammed & Miklas Scholz, 2019. "Climate Variability Impact on the Spatiotemporal Characteristics of Drought and Aridityin Arid and Semi-Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5015-5033, December.
    9. Wenxian Guo & Jianwen Hu & Hongxiang Wang, 2021. "Analysis of Runoff Variation Characteristics and Influencing Factors in the Wujiang River Basin in the Past 30 Years," IJERPH, MDPI, vol. 19(1), pages 1-16, December.
    10. Hossein Tabari & Meron Teferi Taye & Charles Onyutha & Patrick Willems, 2017. "Decadal Analysis of River Flow Extremes Using Quantile-Based Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3371-3387, September.
    11. Kun-xia Yu & Lihua Xiong & Peng Li & Zhanbin Li & Xiang Zhang & Qian Sun, 2018. "Analyzing the Impacts of Climatic and Physiographic Factors on Low Flow Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 881-896, February.
    12. Akanksha Balha & Amit Singh & Suneel Pandey & Reetesh Kumar & Javed Mallick & Chander Kumar Singh, 2023. "Assessing the Impact of Land-Use Dynamics to Predict the Changes in Hydrological Variables Using Effective Impervious Area (EIA)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3999-4014, August.
    13. Kairong Lin & Youqin Lin & Pan Liu & Yanhu He & Xinjun Tu, 2016. "Considering the Order and Symmetry to Improve the Traditional RVA for Evaluation of Hydrologic Alteration of River Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5501-5516, November.
    14. Stefano Casadei & Arnaldo Pierleoni & Michele Bellezza, 2018. "Sustainability of Water Withdrawals in the Tiber River Basin (Central Italy)," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    15. Kerr, J.R. & Tummers, J.S. & Benson, T. & Lucas, M.C. & Kemp, P.S., 2023. "Modelling fine scale route choice of upstream migrating fish as they approach an instream structure," Ecological Modelling, Elsevier, vol. 478(C).
    16. Piotr Parasiewicz & Kamila Belka & Małgorzata Łapińska & Karol Ławniczak & Paweł Prus & Mikołaj Adamczyk & Paweł Buras & Jacek Szlakowski & Zbigniew Kaczkowski & Kinga Krauze & Joanna O’Keeffe & Katar, 2023. "Over 200,000 kilometers of free-flowing river habitat in Europe is altered due to impoundments," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Isabella Georgiou & Serena Caucci & Jonathan Clive Morris & Edeltraud Guenther & Peter Krebs, 2023. "Assessing the Potential of Water Reuse Uptake Through a Private–Public Partnership: a Practitioner’s Perspective," Circular Economy and Sustainability,, Springer.
    18. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Novak, Gorazd & Pengal, Polona & Silva, Ana T. & Domínguez, José M. & Tafuni, Angelo & Četina, Matjaž & Žagar, Dušan, 2023. "Interdisciplinary design of a fish ramp using migration routes analysis," Ecological Modelling, Elsevier, vol. 475(C).
    20. Łukasz Sługocki & Robert Czerniawski, 2023. "Water Quality of the Odra (Oder) River before and during the Ecological Disaster in 2022: A Warning to Water Management," Sustainability, MDPI, vol. 15(11), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:10:y:2021:i:7:p:70-:d:587168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.