IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i6p1921-1932.html
   My bibliography  Save this article

Optimum Design of Lined Channel Sections

Author

Listed:
  • Majid Niazkar
  • Seied Afzali

Abstract

The channel design problem can be treated as an optimization problem in which the objective function is minimization of construction cost. In this definition, the optimum values of section variables, i.e. side slope, bottom width, flow depth and radius, can be computed by minimizing the total cost subjected to a hydraulic flow constraint formula, i.e. the Manning’s equation. In a general scope, the total cost comprises lining, earthwork cost and the additional excavation cost accounting for the depth of earthwork under the ground surface. In this paper, a novel optimization technique, invariably called the Modified Honey Bee Mating Optimization (MHBMO) algorithm, was utilized to solved the defined design problem. By investigation of the affection of different cost values on the optimal results, a new explicit model for common channel shapes, i.e. triangular, rectangular, trapezoidal and circular, was proposed utilizing the MHBMO algorithm to directly design the channel cross sections. The proposed model was compared to the present models in literature using four design examples. The results demonstrate that, despite of simplicity of the new model, it achieves more precise values than the present models for all common channel shapes. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Majid Niazkar & Seied Afzali, 2015. "Optimum Design of Lined Channel Sections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1921-1932, April.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:6:p:1921-1932
    DOI: 10.1007/s11269-015-0919-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-0919-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-0919-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Meymand, Hamed Zeinoddini & Mojarrad, Hasan Doagou, 2011. "An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants," Energy, Elsevier, vol. 36(1), pages 119-132.
    2. Prabhata Swamee & Govinda Mishra & Bhagu Chahar, 2000. "Minimum Cost Design of Lined Canal Sections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(1), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majid Niazkar & Nasser Talebbeydokhti & Seied Hosein Afzali, 2019. "One Dimensional Hydraulic Flow Routing Incorporating a Variable Grain Roughness Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4599-4620, October.
    2. Ahmed A. Lamri & Said M. Easa, 2022. "Lambert W-function Solution for Uniform Flow Depth Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2653-2663, June.
    3. Majid Niazkar, 2020. "Discussion of “Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function” by Dejan Brkić and Pavel Praks, Mathematics 2019, 7 , 34; doi:10.3," Mathematics, MDPI, vol. 8(5), pages 1-6, May.
    4. Aly K. Salem & Yehya E. Imam & Ashraf H. Ghanem & Abdallah S. Bazaraa, 2022. "Genetic Algorithm Based Model for Optimal Selection of Open Channel Design Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5867-5896, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    2. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    3. Zare, Mohsen & Niknam, Taher, 2013. "A new multi-objective for environmental and economic management of Volt/Var Control considering renewable energy resources," Energy, Elsevier, vol. 55(C), pages 236-252.
    4. Elsied, Moataz & Oukaour, Amrane & Youssef, Tarek & Gualous, Hamid & Mohammed, Osama, 2016. "An advanced real time energy management system for microgrids," Energy, Elsevier, vol. 114(C), pages 742-752.
    5. Ebrahim Farjah & Mosayeb Bornapour & Taher Niknam & Bahman Bahmanifirouzi, 2012. "Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network," Energies, MDPI, vol. 5(3), pages 1-25, March.
    6. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    7. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    8. Niknam, Taher & Kavousi Fard, Abdollah & Baziar, Aliasghar, 2012. "Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants," Energy, Elsevier, vol. 42(1), pages 563-573.
    9. Amlan Das, 2010. "Cost and Flooding Probability Minimization Based Design of HBPS Channel," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(2), pages 193-238, January.
    10. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    11. Haddadian, Hossein & Noroozian, Reza, 2017. "Multi-microgrids approach for design and operation of future distribution networks based on novel technical indices," Applied Energy, Elsevier, vol. 185(P1), pages 650-663.
    12. Kavousi-Fard, Abdollah & Niknam, Taher, 2014. "Multi-objective stochastic Distribution Feeder Reconfiguration from the reliability point of view," Energy, Elsevier, vol. 64(C), pages 342-354.
    13. Zhang, Houcheng & Chen, Liwei & Zhang, Jinjie & Chen, Jincan, 2014. "Performance analysis of a direct carbon fuel cell with molten carbonate electrolyte," Energy, Elsevier, vol. 68(C), pages 292-300.
    14. Sanseverino, Eleonora Riva & Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & De Paola, Alessandra & Lo Re, Giuseppe, 2011. "An execution, monitoring and replanning approach for optimal energy management in microgrids," Energy, Elsevier, vol. 36(5), pages 3429-3436.
    15. Abbasi, Ali Reza & Seifi, Ali Reza, 2015. "Considering cost and reliability in electrical and thermal distribution networks reinforcement planning," Energy, Elsevier, vol. 84(C), pages 25-35.
    16. Doagou-Mojarrad, Hasan & Gharehpetian, G.B. & Rastegar, H. & Olamaei, Javad, 2013. "Optimal placement and sizing of DG (distributed generation) units in distribution networks by novel hybrid evolutionary algorithm," Energy, Elsevier, vol. 54(C), pages 129-138.
    17. Shuya Zhong & Yizeng Chen & Jian Zhou & Yuanyuan Liu, 2017. "An interactive satisficing approach for multi-objective optimization with uncertain parameters," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 535-547, March.
    18. Arandian, B. & Ardehali, M.M., 2017. "Effects of environmental emissions on optimal combination and allocation of renewable and non-renewable CHP technologies in heat and electricity distribution networks based on improved particle swarm ," Energy, Elsevier, vol. 140(P1), pages 466-480.
    19. Reddy, S. Surender & Abhyankar, A.R. & Bijwe, P.R., 2011. "Reactive power price clearing using multi-objective optimization," Energy, Elsevier, vol. 36(5), pages 3579-3589.
    20. Obara, Shin’ya & Watanabe, Seizi & Rengarajan, Balaji, 2011. "Operation method study based on the energy balance of an independent microgrid using solar-powered water electrolyzer and an electric heat pump," Energy, Elsevier, vol. 36(8), pages 5200-5213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:6:p:1921-1932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.