IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i8p3051-3069.html
   My bibliography  Save this article

An Integrated Approach to Flood Risk Management: A Case Study of Navaluenga (Central Spain)

Author

Listed:
  • J. Ballesteros-Cánovas
  • M. Sanchez-Silva
  • J. Bodoque
  • A. Díez-Herrero

Abstract

Flood risk management decisions require the rational assessment of mitigation strategies. This is a complex decision-making process involving many uncertainties. This paper presents a case study where a cost-benefit based methodology is used to define the best intervention measures for flood-risk mitigation in central Spain. Based on different flood hazard scenarios, several structural measures considered by the local Basin Water Authority and others defined by engineering criteria were checked for operability. Non-systematic data derived from dendrogeomorphological analysis of riparian trees were included in the flood frequency analysis. Flood damage was assessed by means of depth-damage functions, and flooded urban areas were obtained by applying a hydraulic model. The best defense strategies were obtained by a cost-benefit procedure, where uncertainties derived from each analytical process were incorporated based on a stochastic approach to estimate expected economic losses. The results showed that large structural solutions are not economically viable when compared with other smaller structural measures, presumably because of the pre-established location of dams in the upper part of the basin which do not laminate the flow generated by the surrounding catchment to Navaluenga. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • J. Ballesteros-Cánovas & M. Sanchez-Silva & J. Bodoque & A. Díez-Herrero, 2013. "An Integrated Approach to Flood Risk Management: A Case Study of Navaluenga (Central Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3051-3069, June.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:8:p:3051-3069
    DOI: 10.1007/s11269-013-0332-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0332-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0332-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hyung-Il Eum & A. Vasan & Slobodan Simonovic, 2012. "Integrated Reservoir Management System for Flood Risk Assessment Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3785-3802, October.
    2. Amin Rasekh & Abbas Afshar & Mohammad Afshar, 2010. "Risk-Cost Optimization of Hydraulic Structures: Methodology and Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2833-2851, September.
    3. Armanda Rodrigues & Maria Santos & A. Santos & Fernanda Rocha, 2002. "Dam-Break Flood Emergency Management System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(6), pages 489-503, December.
    4. Pardeep Pall & Tolu Aina & Dáithí A. Stone & Peter A. Stott & Toru Nozawa & Arno G. J. Hilberts & Dag Lohmann & Myles R. Allen, 2011. "Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000," Nature, Nature, vol. 470(7334), pages 382-385, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. Molinari & G. Minucci & M. Mendoza & T. Simonelli, 2016. "Implementing the European “Floods Directive”: the Case of the Po River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1739-1756, March.
    2. H. Glas & M. Jonckheere & A. Mandal & S. James-Williamson & P. Maeyer & G. Deruyter, 2017. "A GIS-based tool for flood damage assessment and delineation of a methodology for future risk assessment: case study for Annotto Bay, Jamaica," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1867-1891, September.
    3. Marcelle Baptista & Ricardo Valcarcel & Vandré Maya & Fernando Canto, 2014. "Selection of Preferred Floodplains for the Renaturalization of Hydrologic Functions: A Case Study of the Paraíba do Sul River Basin, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4781-4793, October.
    4. Fabio Castelli & Marcello Galeotti & Giovanni Rabitti, 2019. "Financial Instruments for Mitigation of Flood Risks: The Case of Florence," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 462-472, February.
    5. D. Molinari & G. Minucci & M. T. Mendoza & T. Simonelli, 2016. "Implementing the European “Floods Directive”: the Case of the Po River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1739-1756, March.
    6. Carolyn Mann & S. E. Wolfe, 2016. "Risk Perceptions and Terror Management Theory: Assessing Public Responses to Urban Flooding in Toronto, Canada," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2651-2670, June.
    7. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    8. Huali Chen & Yuka Ito & Marie Sawamukai & Tomochika Tokunaga, 2015. "Flood hazard assessment in the Kujukuri Plain of Chiba Prefecture, Japan, based on GIS and multicriteria decision analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 105-120, August.
    9. Huali Chen & Yuka Ito & Marie Sawamukai & Tao Su & Tomochika Tokunaga, 2016. "Spatial and temporal changes in flood hazard potential at coastal lowland area: a case study in the Kujukuri Plain, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1513-1527, December.
    10. V. Ruiz-Villanueva & J. Bodoque & A. Díez-Herrero & E. Bladé, 2014. "Large wood transport as significant influence on flood risk in a mountain village," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 967-987, November.
    11. Janez Sušnik & Clemens Strehl & Luuk Postmes & Lydia Vamvakeridou-Lyroudia & Hans-Joachim Mälzer & Dragan Savić & Zoran Kapelan, 2015. "Assessing Financial Loss due to Pluvial Flooding and the Efficacy of Risk-Reduction Measures in the Residential Property Sector," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 161-179, January.
    12. Po-Kuan Chiang & Patrick Willems, 2013. "Model Conceptualization Procedure for River (Flood) Hydraulic Computations: Case Study of the Demer River, Belgium," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4277-4289, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    2. Moinul Islam & Koji Kotani, 2014. "Perceptions to climatic changes and cooperative attitudes toward flood protection in Bangladesh," Working Papers EMS_2014_10, Research Institute, International University of Japan.
    3. S. Lorenz & S. Dessai & J. Paavola & P. Forster, 2015. "The communication of physical science uncertainty in European National Adaptation Strategies," Climatic Change, Springer, vol. 132(1), pages 143-155, September.
    4. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    5. Greg Lusk, 2017. "The social utility of event attribution: liability, adaptation, and justice-based loss and damage," Climatic Change, Springer, vol. 143(1), pages 201-212, July.
    6. Fabian Barthel & Eric Neumayer, 2012. "A trend analysis of normalized insured damage from natural disasters," Climatic Change, Springer, vol. 113(2), pages 215-237, July.
    7. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    8. A. Kay & R. Jones, 2012. "Comparison of the use of alternative UKCP09 products for modelling the impacts of climate change on flood frequency," Climatic Change, Springer, vol. 114(2), pages 211-230, September.
    9. Cuiyun Cheng & Xin Qian & Yuchao Zhang & Qingeng Wang & Jinbao Sheng, 2011. "Estimation of the evacuation clearance time based on dam-break simulation of the Huaxi dam in Southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 227-243, May.
    10. John McClure & Ilan Noy & Yoshi Kashima & Taciano L. Milfont, 2022. "Attributions for extreme weather events: science and the people," Climatic Change, Springer, vol. 174(3), pages 1-17, October.
    11. Christian Huggel & Dáithí Stone & Hajo Eicken & Gerrit Hansen, 2015. "Potential and limitations of the attribution of climate change impacts for informing loss and damage discussions and policies," Climatic Change, Springer, vol. 133(3), pages 453-467, December.
    12. -, 2015. "The Economics of Climate Change in Central America: Summary 2012," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39089, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    13. Akiko Masuya & Ashraf Dewan & Robert Corner, 2015. "Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1859-1882, September.
    14. Srinivasan, Venkatraman & Kumar, Praveen, 2015. "Emergent and divergent resilience behavior in catastrophic shift systems," Ecological Modelling, Elsevier, vol. 298(C), pages 87-105.
    15. David J. Frame & Suzanne M. Rosier & Ilan Noy & Luke J. Harrington & Trevor Carey-Smith & Sarah N. Sparrow & Dáithí A. Stone & Samuel M. Dean, 2020. "Climate change attribution and the economic costs of extreme weather events: a study on damages from extreme rainfall and drought," Climatic Change, Springer, vol. 162(2), pages 781-797, September.
    16. Zeinab Takbiri & Abbas Afshar, 2012. "Multi-Objective Optimization of Fusegates System under Hydrologic Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2323-2345, June.
    17. Ding, Ziyu & Fang, Guohua & Wen, Xin & Tan, Qiaofeng & Huang, Xianfeng & Lei, Xiaohui & Tian, Yu & Quan, Jin, 2018. "A novel operation chart for cascade hydropower system to alleviate ecological degradation in hydrological extremes," Ecological Modelling, Elsevier, vol. 384(C), pages 10-22.
    18. David Martimort & Stéphane Straub, 2016. "How To Design Infrastructure Contracts In A Warming World: A Critical Appraisal Of Public–Private Partnerships," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(1), pages 61-88, February.
    19. Balqis M. Rehan, 2018. "An innovative micro-scale approach for vulnerability and flood risk assessment with the application to property-level protection adoptions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1039-1057, April.
    20. Mohammed Sharif & Donald Burn & Karen Hofbauer, 2013. "Generation of Daily and Hourly Weather Variables for use in Climate Change Vulnerability Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1533-1550, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:8:p:3051-3069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.