IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i5p1193-1205.html
   My bibliography  Save this article

Field Application of the Multilinear Muskingum Discharge Routing Method

Author

Listed:
  • Bhabagrahi Sahoo

Abstract

To implicitly model the nonlinear dynamics of flood wave propagation in rivers with floodplains, a multilinear discharge-hydrograph routing method based on time distribution scheme is proposed. The framework of this method is based on the variable parameter Muskingum-type routing method, which is used as the linear sub-model. The applicability limit and suitability of this flood routing method is verified using numerical experiments and field data, respectively. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Bhabagrahi Sahoo, 2013. "Field Application of the Multilinear Muskingum Discharge Routing Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1193-1205, March.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:5:p:1193-1205
    DOI: 10.1007/s11269-012-0228-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0228-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0228-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Nagesh Kumar & K. Srinivasa Raju & T. Sathish, 2004. "River Flow Forecasting using Recurrent Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(2), pages 143-161, April.
    2. Dooge, James C. I., 1973. "Linear Theory of Hydrologic Systems," Technical Bulletins 160041, United States Department of Agriculture, Economic Research Service.
    3. Avinash Agarwal & R. Singh, 2004. "Runoff Modelling Through Back Propagation Artificial Neural Network With Variable Rainfall-Runoff Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 285-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. Zucco & G. Tayfur & T. Moramarco, 2015. "Reverse Flood Routing in Natural Channels using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4241-4267, September.
    2. Bhabagrahi Sahoo & Muthiah Perumal & Tommaso Moramarco & Silvia Barbetta, 2014. "Rating Curve Development at Ungauged River Sites using Variable Parameter Muskingum Discharge Routing Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3783-3800, September.
    3. Wang Zhang & Pan Liu & Xizhen Chen & Li Wang & Xueshan Ai & Maoyuan Feng & Dedi Liu & Yuanyuan Liu, 2016. "Optimal Operation of Multi-reservoir Systems Considering Time-lags of Flood Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 523-540, January.
    4. Wang Zhang & Pan Liu & Xizhen Chen & Li Wang & Xueshan Ai & Maoyuan Feng & Dedi Liu & Yuanyuan Liu, 2016. "Optimal Operation of Multi-reservoir Systems Considering Time-lags of Flood Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 523-540, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Diamantopoulou & Vassilis Antonopoulos & Dimitris Papamichail, 2007. "Cascade Correlation Artificial Neural Networks for Estimating Missing Monthly Values of Water Quality Parameters in Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 649-662, March.
    2. Abdüsselam Altunkaynak, 2007. "Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 399-408, February.
    3. A. Sohail & K. Watanabe & S. Takeuchi, 2008. "Runoff Analysis for a Small Watershed of Tono Area Japan by Back Propagation Artificial Neural Network with Seasonal Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 1-22, January.
    4. Jia Liu & Jianhua Wang & Shibing Pan & Kewang Tang & Chuanzhe Li & Dawei Han, 2015. "A real-time flood forecasting system with dual updating of the NWP rainfall and the river flow," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1161-1182, June.
    5. Pin-Chun Huang & Kuo-Lin Hsu & Kwan Tun Lee, 2021. "Improvement of Two-Dimensional Flow-Depth Prediction Based on Neural Network Models By Preprocessing Hydrological and Geomorphological Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1079-1100, February.
    6. Kostić, Srđan & Stojković, Milan & Prohaska, Stevan, 2016. "Hydrological flow rate estimation using artificial neural networks: Model development and potential applications," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 373-385.
    7. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    8. L. Karthikeyan & D. Kumar & Didier Graillot & Shishir Gaur, 2013. "Prediction of Ground Water Levels in the Uplands of a Tropical Coastal Riparian Wetland using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 871-883, February.
    9. R. Rai & S. Sarkar & Alka Upadhyay & V. Singh, 2010. "Efficacy of Nakagami-m Distribution Function for Deriving Unit Hydrograph," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 563-575, February.
    10. Desalegn Edossa & Mukand Babel, 2011. "Application of ANN-Based Streamflow Forecasting Model for Agricultural Water Management in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1759-1773, April.
    11. Georgia Papacharalampous & Hristos Tyralis & Demetris Koutsoyiannis, 2018. "Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5207-5239, December.
    12. Shivshanker Patel & Parthasarathy Ramachandran, 2015. "A Comparison of Machine Learning Techniques for Modeling River Flow Time Series: The Case of Upper Cauvery River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 589-602, January.
    13. Thiago Victor Medeiros Nascimento & Celso Augusto Guimarães Santos & Camilo Allyson Simões Farias & Richarde Marques Silva, 2022. "Monthly Streamflow Modeling Based on Self-Organizing Maps and Satellite-Estimated Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2359-2377, May.
    14. R. Rai & S. Sarkar & V. Singh, 2009. "Evaluation of the Adequacy of Statistical Distribution Functions for Deriving Unit Hydrograph," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 899-929, March.
    15. Qiang Zhang & Ben-De Wang & Bin He & Yong Peng & Ming-Lei Ren, 2011. "Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2683-2703, September.
    16. Veysel Güldal & Hakan Tongal, 2010. "Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 105-128, January.
    17. Marijana Hadzima-Nyarko & Anamarija Rabi & Marija Šperac, 2014. "Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1379-1394, March.
    18. Mohammed Seyam & Faridah Othman, 2014. "The Influence of Accurate Lag Time Estimation on the Performance of Stream Flow Data-driven Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2583-2597, July.
    19. Kwan Lee & Wei-Chiao Hung & Chung-Chieh Meng, 2008. "Deterministic Insight into ANN Model Performance for Storm Runoff Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 67-82, January.
    20. Avinash Agarwal & R. Singh, 2004. "Runoff Modelling Through Back Propagation Artificial Neural Network With Variable Rainfall-Runoff Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 285-300, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:5:p:1193-1205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.