IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v21y2007i8p1341-1351.html
   My bibliography  Save this article

Effect of Subsurface Drip Irrigation on Cotton Plantations

Author

Listed:
  • D. Kalfountzos
  • I. Alexiou
  • S. Kotsopoulos
  • G. Zavakos
  • P. Vyrlas

Abstract

During the cultivation periods of 2001 (a dry year) and 2002 (a wet one), an experimental cotton field was irrigated using a subsurface and a surface drip system. Both systems included drip-lines 17-mm in diameter, with emitters discharging 3.8 l/h and spacing 1 m. The treatments included four irrigation levels. These were equal to 120%, 100%, 80% and 60% of the net crop water requirements during each irrigation interval. For their calculation the FAO56–Penman–Monteith methodology that estimates crop evapotranspiration was utilised. From the statistical analysis of the harvested cotton plantations it has been found that during the dry year (2001) the seed cotton yields were significantly higher where the subsurface irrigation system was used and the irrigation applications met the 80% and 60% of the crop water needs. During the two experimental years the higher irrigation applications, 120% and 100% of the crop water needs, gave seed cotton yields that did not differ significantly for both systems (subsurface and surface). Copyright Springer Science+Business Media, Inc. 2007

Suggested Citation

  • D. Kalfountzos & I. Alexiou & S. Kotsopoulos & G. Zavakos & P. Vyrlas, 2007. "Effect of Subsurface Drip Irrigation on Cotton Plantations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1341-1351, August.
  • Handle: RePEc:spr:waterr:v:21:y:2007:i:8:p:1341-1351
    DOI: 10.1007/s11269-006-9085-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-006-9085-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-006-9085-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayars, J. E. & Schoneman, R. A. & Dale, F. & Meso, B. & Shouse, P., 2001. "Managing subsurface drip irrigation in the presence of shallow ground water," Agricultural Water Management, Elsevier, vol. 47(3), pages 243-264, April.
    2. Tsakiris, G., 1988. "Daily potential evapotranspiration modelling," Agricultural Water Management, Elsevier, vol. 13(2-4), pages 393-402, June.
    3. Hanson, B. & May, D., 2004. "Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability," Agricultural Water Management, Elsevier, vol. 68(1), pages 1-17, July.
    4. M. Sakellariou-Makrantonaki, 1997. "Water Drainage in Layered Soils. Laboratory Experiments and Numerical Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(6), pages 437-444, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stamatios Elmaloglou & Konstantinos Soulis & Nicholas Dercas, 2013. "Simulation of Soil Water Dynamics Under Surface Drip Irrigation from Equidistant Line Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4131-4148, September.
    2. Zounemat-Kermani, M. & Asadi, R., 2018. "Technical and economic evaluation of the deficit irrigation on yield of cotton," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277067, International Association of Agricultural Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhangzhong, Lili & Yang, Peiling & Zhen, Wengang & Zhang, Xin & Wang, Caiyuan, 2019. "A kinetic model for the chemical clogging of drip irrigation system using saline water," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Yu, Yingduo & Shihong, Gong & Xu, Di & Jiandong, Wang & Ma, Xiaopeng, 2010. "Effects of Treflan injection on winter wheat growth and root clogging of subsurface drippers," Agricultural Water Management, Elsevier, vol. 97(5), pages 723-730, May.
    3. Li, Xiaobin & Kang, Yaohu, 2020. "Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation," Agricultural Water Management, Elsevier, vol. 231(C).
    4. Hanson, Blaine R. & May, Donald M., 2006. "Crop coefficients for drip-irrigated processing tomato," Agricultural Water Management, Elsevier, vol. 81(3), pages 381-399, March.
    5. Selim, E.M. & Mosa, A.A. & El-Ghamry, A.M., 2009. "Evaluation of humic substances fertigation through surface and subsurface drip irrigation systems on potato grown under Egyptian sandy soil conditions," Agricultural Water Management, Elsevier, vol. 96(8), pages 1218-1222, August.
    6. Elsayed Omer & Saber Hendawy & Abdel Nasser ElGendy & Alberto Mannu & Giacomo L. Petretto & Giorgio Pintore, 2020. "Effect of Irrigation Systems and Soil Conditioners on the Growth and Essential Oil Composition of Rosmarinus officinalis L. Cultivated in Egypt," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    7. Mishari A. Alnaim & Magdy S. Mohamed & Maged Mohammed & Muhammad Munir, 2022. "Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
    8. He, Yuelin & Xi, Benye & Li, Guangde & Wang, Ye & Jia, Liming & Zhao, Dehai, 2021. "Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) pla," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Peipei Zhao & Ming-an Shao & Ahmed Melegy, 2010. "Soil Water Distribution and Movement in Layered Soils of a Dam Farmland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3871-3883, November.
    10. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    11. Al-Omran, A.M. & Sheta, A.S. & Falatah, A.M. & Al-Harbi, A.R., 2005. "Effect of drip irrigation on squash (Cucurbita pepo) yield and water-use efficiency in sandy calcareous soils amended with clay deposits," Agricultural Water Management, Elsevier, vol. 73(1), pages 43-55, April.
    12. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    13. Kuşçu, Hayrettin & Turhan, Ahmet & Demir, Ali Osman, 2014. "The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 133(C), pages 92-103.
    14. Yan Zhu & Huanjie Cai & Libing Song & Xiaowen Wang & Zihui Shang & Yanan Sun, 2020. "Aerated Irrigation of Different Irrigation Levels and Subsurface Dripper Depths Affects Fruit Yield, Quality and Water Use Efficiency of Greenhouse Tomato," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    15. Y. Li & G. Huang & S. Nie, 2009. "Water Resources Management and Planning under Uncertainty: an Inexact Multistage Joint-Probabilistic Programming Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2515-2538, September.
    16. Ghamarnia, Houshang & Khodaei, Erfan, 2016. "Evidence on shallow groundwater use by edible green vegetables such as Solanum pseudoca psicum, Ocimum basilicum and Lepidium sativum in a semi-arid climate condition," Agricultural Water Management, Elsevier, vol. 165(C), pages 198-210.
    17. Farneselli, Michela & Benincasa, Paolo & Tosti, Giacomo & Simonne, Eric & Guiducci, Marcello & Tei, Francesco, 2015. "High fertigation frequency improves nitrogen uptake and crop performance in processing tomato grown with high nitrogen and water supply," Agricultural Water Management, Elsevier, vol. 154(C), pages 52-58.
    18. Ayars, J.E. & Fulton, A. & Taylor, B., 2015. "Subsurface drip irrigation in California—Here to stay?," Agricultural Water Management, Elsevier, vol. 157(C), pages 39-47.
    19. Badr, M.A. & Abou-Hussein, S.D. & El-Tohamy, W.A., 2016. "Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region," Agricultural Water Management, Elsevier, vol. 169(C), pages 90-97.
    20. Barnard, Johannes Hendrikus & Matthews, Nicolette & du Preez, Christiaan Cornelius, 2021. "Formulating and assessing best water and salt management practices: Lessons from non-saline and water-logged irrigated fields," Agricultural Water Management, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:21:y:2007:i:8:p:1341-1351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.