IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v12y2004i1p1-63.html
   My bibliography  Save this article

Approximative solution methods for multiobjective combinatorial optimization

Author

Listed:
  • Matthias Ehrgott
  • Xavier Gandibleux

Abstract

No abstract is available for this item.

Suggested Citation

  • Matthias Ehrgott & Xavier Gandibleux, 2004. "Approximative solution methods for multiobjective combinatorial optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-63, June.
  • Handle: RePEc:spr:topjnl:v:12:y:2004:i:1:p:1-63
    DOI: 10.1007/BF02578918
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02578918
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02578918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ralph E. Steuer & Joe Silverman & Alan W. Whisman, 1993. "A Combined Tchebycheff/Aspiration Criterion Vector Interactive Multiobjective Programming Procedure," Management Science, INFORMS, vol. 39(10), pages 1255-1260, October.
    2. Hapke, Maciej & Jaszkiewicz, Andrzej & Slowinski, Roman, 1998. "Interactive analysis of multiple-criteria project scheduling problems," European Journal of Operational Research, Elsevier, vol. 107(2), pages 315-324, June.
    3. T'kindt, Vincent & Monmarche, Nicolas & Tercinet, Fabrice & Laugt, Daniel, 2002. "An Ant Colony Optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 142(2), pages 250-257, October.
    4. Karl Doerner & Walter Gutjahr & Richard Hartl & Christine Strauss & Christian Stummer, 2004. "Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection," Annals of Operations Research, Springer, vol. 131(1), pages 79-99, October.
    5. Ramos, R. M. & Alonso, S. & Sicilia, J. & Gonzalez, C., 1998. "The problem of the optimal biobjective spanning tree," European Journal of Operational Research, Elsevier, vol. 111(3), pages 617-628, December.
    6. Minghe Sun & Antonie Stam & Ralph E. Steuer, 1996. "Solving Multiple Objective Programming Problems Using Feed-Forward Artificial Neural Networks: The Interactive FFANN Procedure," Management Science, INFORMS, vol. 42(6), pages 835-849, June.
    7. Safer, Hershel M. & Orlin, James B., 1953-, 1995. "Fast approximation schemes for multi-criteria flow, knapsack, and scheduling problems," Working papers 3757-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    8. Jones, D. F. & Mirrazavi, S. K. & Tamiz, M., 2002. "Multi-objective meta-heuristics: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 137(1), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingue SUn, 2010. "A Branch-and-Bound Algorithm for Representative Integer Efficient Solutions in Multiple Objective Network Programming Problems," Working Papers 0007, College of Business, University of Texas at San Antonio.
    2. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    3. Minghe Sun, 2003. "Procedures for Finding Nondominated Solutions for Multiple Objective Network Programming Problems," Transportation Science, INFORMS, vol. 37(2), pages 139-152, May.
    4. Molina, Julin & Santana, Luis V. & Hernandez-Daz, Alfredo G. & Coello Coello, Carlos A. & Caballero, Rafael, 2009. "g-dominance: Reference point based dominance for multiobjective metaheuristics," European Journal of Operational Research, Elsevier, vol. 197(2), pages 685-692, September.
    5. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    6. Sun, Minghe, 2005. "Some issues in measuring and reporting solution quality of interactive multiple objective programming procedures," European Journal of Operational Research, Elsevier, vol. 162(2), pages 468-483, April.
    7. Labiba Noshin Asha & Arup Dey & Nita Yodo & Lucy G. Aragon, 2022. "Optimization Approaches for Multiple Conflicting Objectives in Sustainable Green Supply Chain Management," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    8. Garcia-Martinez, C. & Cordon, O. & Herrera, F., 2007. "A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP," European Journal of Operational Research, Elsevier, vol. 180(1), pages 116-148, July.
    9. KIlIç, Murat & Ulusoy, Gündüz & Serifoglu, Funda Sivrikaya, 2008. "A bi-objective genetic algorithm approach to risk mitigation in project scheduling," International Journal of Production Economics, Elsevier, vol. 112(1), pages 202-216, March.
    10. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    11. Minghe Sun, 2005. "Warm-Start Routines for Solving Augmented Weighted Tchebycheff Network Programs in Multiple-Objective Network Programming," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 422-437, November.
    12. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    13. Wen, Charlie & Eksioglu, Sandra Duni & Greenwood, Allen & Zhang, Shu, 2010. "Crane scheduling in a shipbuilding environment," International Journal of Production Economics, Elsevier, vol. 124(1), pages 40-50, March.
    14. Boxuan Zhao & Jianmin Gao & Kun Chen & Ke Guo, 2018. "Two-generation Pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 93-108, January.
    15. Jian Xiong & Rui Wang & Jiang Jiang, 2019. "Weapon Selection and Planning Problems Using MOEA/D with Distance-Based Divided Neighborhoods," Complexity, Hindawi, vol. 2019, pages 1-18, November.
    16. Surafel Luleseged Tilahun & Mohamed A. Tawhid, 2019. "Swarm hyperheuristic framework," Journal of Heuristics, Springer, vol. 25(4), pages 809-836, October.
    17. T. Gómez & M. Hernández & J. Molina & M. León & E. Aldana & R. Caballero, 2011. "A multiobjective model for forest planning with adjacency constraints," Annals of Operations Research, Springer, vol. 190(1), pages 75-92, October.
    18. Gal, Tomas & Hanne, Thomas, 2006. "Nonessential objectives within network approaches for MCDM," European Journal of Operational Research, Elsevier, vol. 168(2), pages 584-592, January.
    19. Drexl, Andreas & Nikulin, Yury, 2006. "Fuzzy multicriteria flight gate assignment," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 605, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    20. Cristina Requejo & Eulália Santos, 2020. "Efficient lower and upper bounds for the weight-constrained minimum spanning tree problem using simple Lagrangian based algorithms," Operational Research, Springer, vol. 20(4), pages 2467-2495, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:12:y:2004:i:1:p:1-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.