IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v34y2025i3d10.1007_s11749-025-00972-y.html
   My bibliography  Save this article

A kernel-based test for the first-order separability of spatio-temporal point processes

Author

Listed:
  • Mohammad Ghorbani

    (Luleå University of Technology)

  • Nafiseh Vafaei

    (Luleå University of Technology
    University of Mohaghegh Ardabili)

  • Mari Myllymäki

    (Natural Resources Institute Finland (Luke))

Abstract

We present an innovative statistical test designed to assess the first-order separability of a spatio-temporal point process. Our proposed test employs block permutations and a novel test statistic that incorporates a machine learning technique known as the Hilbert–Schmidt independence criterion. To enhance the practicality of the criterion, we apply the kernel trick. The block permutations are designed to maintain the second-order structure of the point pattern, disrupting it only at the block borders. This design enables the application of our test to a general spatio-temporal point process, which may exhibit small-scale clustering or regularity. We investigated the empirical level of the block permutation-based tests with the new and two previously proposed test statistics for clustered and regular point processes, represented in our study by log Gaussian Cox processes and determinantal point processes. By comparing our results with those obtained from a previously proposed permutation-based test, we confirmed the effectiveness of our method in terms of significance level, power, and notably computational cost. We applied the test to real-world datasets, namely the UK’s 2001 foot-and-mouth disease epidemic and varicella data from Valencia.

Suggested Citation

  • Mohammad Ghorbani & Nafiseh Vafaei & Mari Myllymäki, 2025. "A kernel-based test for the first-order separability of spatio-temporal point processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(3), pages 580-611, September.
  • Handle: RePEc:spr:testjl:v:34:y:2025:i:3:d:10.1007_s11749-025-00972-y
    DOI: 10.1007/s11749-025-00972-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-025-00972-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-025-00972-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mari Myllymäki & Tomáš Mrkvička & Pavel Grabarnik & Henri Seijo & Ute Hahn, 2017. "Global envelope tests for spatial processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 381-404, March.
    2. Ghorbani, Mohammad & Vafaei, Nafiseh & Dvořák, Jiří & Myllymäki, Mari, 2021. "Testing the first-order separability hypothesis for spatio-temporal point patterns," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    3. Guan, Yongtao, 2008. "On Consistent Nonparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1238-1247.
    4. Edith Gabriel & Peter J. Diggle, 2009. "Second‐order analysis of inhomogeneous spatio‐temporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 43-51, February.
    5. Jesper Møller & Mohammad Ghorbani, 2012. "Aspects of second-order analysis of structured inhomogeneous spatio-temporal point processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(4), pages 472-491, November.
    6. Frédéric Lavancier & Jesper Møller & Ege Rubak, 2015. "Determinantal point process models and statistical inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 853-877, September.
    7. Frederic Paik Schoenberg, 2004. "Testing Separability in Spatial-Temporal Marked Point Processes," Biometrics, The International Biometric Society, vol. 60(2), pages 471-481, June.
    8. Peter Diggle, 1985. "A Kernel Method for Smoothing Point Process Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 138-147, June.
    9. Isabel Fuentes‐Santos & Wenceslao González‐Manteiga & Jorge Mateu, 2018. "A first‐order, ratio‐based nonparametric separability test for spatiotemporal point processes," Environmetrics, John Wiley & Sons, Ltd., vol. 29(1), February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghorbani, Mohammad & Vafaei, Nafiseh & Dvořák, Jiří & Myllymäki, Mari, 2021. "Testing the first-order separability hypothesis for spatio-temporal point patterns," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    2. Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
    3. Edith Gabriel, 2014. "Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 411-431, June.
    4. Ondřej Šedivý & Antti Penttinen, 2014. "Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 225-249, August.
    5. Nicoletta D’Angelo & Giada Adelfio, 2024. "Minimum contrast for the first-order intensity estimation of spatial and spatio-temporal point processes," Statistical Papers, Springer, vol. 65(6), pages 3651-3679, August.
    6. Frédéric Lavancier & Ronan Le Guével, 2021. "Spatial birth–death–move processes: Basic properties and estimation of their intensity functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 798-825, September.
    7. Ottmar Cronie & Julia Jansson & Konstantinos Konstantinou, 2024. "Discussion of the Paper “Marked Spatial Point Processes: Current State and Extensions to Point Processes on Linear Networks”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(2), pages 379-388, June.
    8. Eckardt, Matthias & González, Jonatan A. & Mateu, Jorge, 2021. "Graphical modelling and partial characteristics for multitype and multivariate-marked spatio-temporal point processes," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    9. Matthias Eckardt & Mehdi Moradi, 2024. "Rejoinder on ‘Marked Spatial Point Processes: Current State and Extensions to Point Processes on Linear Networks’," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(2), pages 405-416, June.
    10. Michaela Prokešová & Jiří Dvořák, 2014. "Statistics for Inhomogeneous Space-Time Shot-Noise Cox Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 433-449, June.
    11. Isabel Fuentes-Santos & Wenceslao González-Manteiga & Jorge Mateu, 2016. "Consistent Smooth Bootstrap Kernel Intensity Estimation for Inhomogeneous Spatial Poisson Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 416-435, June.
    12. Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2024. "Goodness-of-fit test for point processes first-order intensity," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    13. Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2020. "Bootstrapping kernel intensity estimation for inhomogeneous point processes with spatial covariates," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    14. Jesper Møller & Jakob G. Rasmussen, 2024. "Cox processes driven by transformed Gaussian processes on linear networks—A review and new contributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 1288-1322, September.
    15. Nicoletta D’Angelo & Giada Adelfio & Jorge Mateu, 2023. "Local inhomogeneous second-order characteristics for spatio-temporal point processes occurring on linear networks," Statistical Papers, Springer, vol. 64(3), pages 779-805, June.
    16. Yu Ryan Yue & Ji Meng Loh, 2011. "Bayesian Semiparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 937-946, September.
    17. Jesper Møller & Ninna Vihrs, 2022. "Should We Condition on the Number of Points When Modelling Spatial Point Patterns?," International Statistical Review, International Statistical Institute, vol. 90(3), pages 551-562, December.
    18. José J. Quinlan & Fernando A. Quintana & Garritt L. Page, 2021. "On a class of repulsive mixture models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 445-461, June.
    19. Kateřina Koňasová & Jiří Dvořák, 2021. "Stochastic Reconstruction for Inhomogeneous Point Patterns," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 527-547, June.
    20. Nicoletta D'Angelo, 2025. "Detecting Changes in Space‐Varying Parameters of Local Poisson Point Processes," Environmetrics, John Wiley & Sons, Ltd., vol. 36(5), July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:34:y:2025:i:3:d:10.1007_s11749-025-00972-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.