IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v32y2023i3d10.1007_s11749-023-00864-z.html
   My bibliography  Save this article

Reliability and optimal replacement policy for a generalized mixed shock model

Author

Listed:
  • Murat Ozkut

    (Izmir University of Economics)

Abstract

A generalized mixed shock model, which mixes two run shock models, is developed and analyzed. According to the model, the system subject to both internal degradation and external shocks fails upon the occurrence of $$k_1$$ k 1 consecutive shocks whose magnitude is between predefined critical values of $$d_1$$ d 1 and $$d_2$$ d 2 such that $$d_1

Suggested Citation

  • Murat Ozkut, 2023. "Reliability and optimal replacement policy for a generalized mixed shock model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 1038-1054, September.
  • Handle: RePEc:spr:testjl:v:32:y:2023:i:3:d:10.1007_s11749-023-00864-z
    DOI: 10.1007/s11749-023-00864-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-023-00864-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-023-00864-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zarezadeh, Somayeh & Asadi, Majid, 2019. "Coherent systems subject to multiple shocks with applications to preventative maintenance," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 124-132.
    2. Huang, Xianzhen & Jin, Sujun & He, Xuefeng & He, David, 2019. "Reliability analysis of coherent systems subject to internal failures and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 75-83.
    3. Cirillo, Pasquale & Hüsler, Jürg, 2011. "Extreme shock models: An alternative perspective," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 25-30, January.
    4. Cui, Lirong & Wu, Bei, 2019. "Extended Phase-type models for multistate competing risk systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 1-16.
    5. Eryilmaz, Serkan & Devrim, Yilser, 2019. "Reliability and optimal replacement policy for a k-out-of-n system subject to shocks," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 393-397.
    6. Li, Xiang-Yu & Li, Yan-Feng & Huang, Hong-Zhong & Zio, Enrico, 2018. "Reliability assessment of phased-mission systems under random shocks," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 352-361.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamed Lorvand & Somayeh Zarezadeh, 2025. "Reliability modeling of weighted k-out-of-n systems exposed to external shocks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 133-160, April.
    2. Lin, Huizhong & Zhu, Mengmeng, 2025. "Damage-resistant CPS reliability modeling considering coupled system resistance effects," Reliability Engineering and System Safety, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eryilmaz, Serkan & Kan, Cihangir, 2019. "Reliability and optimal replacement policy for an extreme shock model with a change point," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    2. Eryilmaz, Serkan & Devrim, Yilser, 2019. "Reliability and optimal replacement policy for a k-out-of-n system subject to shocks," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 393-397.
    3. Hamed Lorvand & Somayeh Zarezadeh, 2025. "Reliability modeling of weighted k-out-of-n systems exposed to external shocks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 133-160, April.
    4. Somayeh Ashrafi & Majid Asadi & Razieh Rostami, 2024. "On preventive maintenance of k-out-of-n systems subject to fatal shocks," Journal of Risk and Reliability, , vol. 238(2), pages 291-303, April.
    5. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Fan, Yu, 2020. "Multi-state balanced systems in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Wang, Xiaoyue & Ning, Ru & Zhao, Xian & Zhou, Jian, 2022. "Reliability analyses of k-out-of-n: F capability-balanced systems in a multi-source shock environment," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    7. Zarezadeh, Somayeh & Ashrafi, Somayeh, 2019. "On preventive maintenance of networks with components subject to external shocks," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Wang, Xiaoyue & Zhao, Xian & Wang, Siqi & Sun, Leping, 2020. "Reliability and maintenance for performance-balanced systems operating in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Wu, Bei & Ding, Dong, 2022. "A gamma process based model for systems subject to multiple dependent competing failure processes under Markovian environments," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2024. "On Survival of Coherent Systems Subject to Random Shocks," Methodology and Computing in Applied Probability, Springer, vol. 26(1), pages 1-29, March.
    11. Junyuan Wang & Xufeng Zhao & Jiawei Xiang, 2024. "Optimum design and replacement policies for k-out-of-n systems with deviation time and cost," Annals of Operations Research, Springer, vol. 340(1), pages 593-617, September.
    12. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal sequencing of elements activation in 1-out-of-n warm standby system with storage," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    13. Fang, Chen & Cui, Lirong, 2021. "Balanced Systems by Considering Multi-state Competing Risks Under Degradation Processes," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Dong, Wenjie & Liu, Sifeng & Tao, Liangyan & Cao, Yingsai & Fang, Zhigeng, 2019. "Reliability variation of multi-state components with inertial effect of deteriorating output performances," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 176-185.
    15. Maneckshaw, B. & Mahapatra, G.S., 2024. "Crossover point analysis with Jensen-Shannon divergence lower bound for bi-objective reliability optimization of k-out-of-n system," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    16. Zhang, Jingqi & Fouladirad, Mitra & Limnios, Nikolaos, 2025. "Sensitivity analysis of an imperfect maintenance policy for Proton-exchange membrane fuel cell based on geometric a semi-Markov model," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    17. Yao, Jinyong & Gao, Zhanfei & He, Yihai & Peng, Chong, 2024. "Integrated mission reliability modeling for multistate manufacturing systems considering heterogeneous feedstocks based on extended stochastic flow manufacturing network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    18. Lyu, Hao & Qu, Hongchen & Yang, Zaiyou & Ma, Li & Lu, Bing & Pecht, Michael, 2023. "Reliability analysis of dependent competing failure processes with time-varying δ shock model," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    19. Maryam Kelkinnama & Serkan Eryilmaz, 2023. "Some reliability measures and maintenance policies for a coherent system composed of different types of components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 57-82, January.
    20. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimizing corrective maintenance for multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:32:y:2023:i:3:d:10.1007_s11749-023-00864-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.