On the general $$\delta $$ δ -shock model
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-022-00810-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jozef L. Teugels & Petra Vynckier, 1996. "The structure distribution in a mixed Poisson process," International Journal of Stochastic Analysis, Hindawi, vol. 9, pages 1-8, January.
- Ranjkesh, Somayeh Hamed & Hamadani, Ali Zeinal & Mahmoodi, Safieh, 2019. "A new cumulative shock model with damage and inter-arrival time dependency," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
- A-Hameed, M. S. & Proschan, F., 1973. "Nonstationary shock models," Stochastic Processes and their Applications, Elsevier, vol. 1(4), pages 383-404, October.
- Maxim Finkelstein, 2008. "Failure Rate Modelling for Reliability and Risk," Springer Series in Reliability Engineering, Springer, number 978-1-84800-986-8, June.
- Ji Hwan Cha & Maxim Finkelstein, 2018. "Point Processes for Reliability Analysis," Springer Series in Reliability Engineering, Springer, number 978-3-319-73540-5, June.
- Fermín Mallor & Javier Santos, 2003. "Reliability of systems subject to shocks with a stochastic dependence for the damages," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 427-444, December.
- Tang, Ya-yong & Lam, Yeh, 2006. "A [delta]-shock maintenance model for a deteriorating system," European Journal of Operational Research, Elsevier, vol. 168(2), pages 541-556, January.
- Gut, Allan & Hüsler, Jürg, 2005. "Realistic variation of shock models," Statistics & Probability Letters, Elsevier, vol. 74(2), pages 187-204, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhao, Xian & Dong, Bingbing & Wang, Xiaoyue, 2023. "Reliability analysis of a two-dimensional voting system equipped with protective devices considering triggering failures," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2022. "On the Time-Dependent Delta-Shock Model Governed by the Generalized PóLya Process," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1627-1650, September.
- Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2015. "A shock and wear model with dependence between the interarrival failures," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 339-352.
- Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2022. "On Properties of the Phase-type Mixed Poisson Process and its Applications to Reliability Shock Modeling," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2933-2960, December.
- Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2018. "Constructing a Markov process for modelling a reliability system under multiple failures and replacements," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 34-47.
- Hyunju Lee & Ji Hwan Cha, 2021. "A general multivariate new better than used (MNBU) distribution and its properties," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(1), pages 27-46, January.
- Hazra, Nil Kamal & Finkelstein, Maxim & Cha, Ji Hwan, 2022. "On a hazard (failure) rate process with delays after shocks," Statistics & Probability Letters, Elsevier, vol. 181(C).
- Gregory Levitin & Maxim Finkelstein, 2018. "Optimal Mission Abort Policy for Systems Operating in a Random Environment," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 795-803, April.
- Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Finkelstein, Maxim & Marais, Francois, 2010. "On terminating Poisson processes in some shock models," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 874-879.
- Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
- Levitin, Gregory & Finkelstein, Maxim, 2018. "Optimal mission abort policy for systems in a random environment with variable shock rate," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 11-17.
- Maxim Finkelstein & Ji Hwan Cha, 2022. "Reducing degradation and age of items in imperfect repair modeling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1058-1081, December.
- Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Mission abort policy balancing the uncompleted mission penalty and system loss risk," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 194-201.
- Cha, Ji Hwan & Finkelstein, Maxim, 2024. "Preventive maintenance for the constrained multi-attempt minimal repair," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Cha, Ji Hwan & Finkelstein, Maxim, 2019. "Stochastic modeling for systems with delayed failures," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 118-124.
- Finkelstein, Maxim & Cha, Ji Hwan & Bedford, Tim, 2023. "Optimal preventive maintenance strategy for populations of systems that generate outputs," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Zhao, Xian & Guo, Xiaoxin & Wang, Xiaoyue, 2018. "Reliability and maintenance policies for a two-stage shock model with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 185-194.
- Gregory Levitin & Maxim Finkelstein, 2018. "Optimal mission abort policy with multiple shock number thresholds," Journal of Risk and Reliability, , vol. 232(6), pages 607-615, December.
- Wang, Xiaoyue & Zhao, Xian & Wu, Congshan & Wang, Siqi, 2022. "Mixed shock model for multi-state weighted k-out-of-n: F systems with degraded resistance against shocks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Cha, Ji Hwan & Finkelstein, Maxim, 2016. "New shock models based on the generalized Polya process," European Journal of Operational Research, Elsevier, vol. 251(1), pages 135-141.
More about this item
Keywords
Reliability; $$delta $$ δ -shock model; Poisson generalized gamma process; Homogeneous Poisson process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:31:y:2022:i:4:d:10.1007_s11749-022-00810-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.