IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v30y2021i4d10.1007_s11749-021-00768-w.html
   My bibliography  Save this article

Two-way layout factorial experiments of spatial point pattern responses in mineral flotation

Author

Listed:
  • Jonatan A. González

    (University Jaume I)

  • Bernardo M. Lagos-Álvarez

    (University of Concepción)

  • Jorge Mateu

    (University Jaume I)

Abstract

Factorial experiments are well-understood when the given observations are outcomes of random variables. However, when we observe spatial point patterns in each combination of factors cells, the methodology is much less developed. Motivated by a real problem of locations of bubbles in a mineral flotation experiment where the interest is analysing if the spatial distribution might be affected by frother concentrations and volumetric airflow rates, we develop an approach for statistical testing of two-way factorial experiments for spatial point patterns. We describe the point patterns through the K-function, a second-order summary statistic, and develop a set of new Fisher-based statistics using weighted means. For inference by Monte Carlo, we use random permutations of weighted residuals depending on the null hypothesis. We conduct simulation experiments to demonstrate the performance of the new test statistics and present the results of the real problem.

Suggested Citation

  • Jonatan A. González & Bernardo M. Lagos-Álvarez & Jorge Mateu, 2021. "Two-way layout factorial experiments of spatial point pattern responses in mineral flotation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 1046-1075, December.
  • Handle: RePEc:spr:testjl:v:30:y:2021:i:4:d:10.1007_s11749-021-00768-w
    DOI: 10.1007/s11749-021-00768-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-021-00768-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-021-00768-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ute Hahn & Eva B. Vedel Jensen, 2016. "Hidden Second-order Stationary Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 455-475, June.
    2. Ute Hahn, 2012. "A Studentized Permutation Test for the Comparison of Spatial Point Patterns," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 754-764, June.
    3. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    4. M. N. M. van Lieshout & A. J. Baddeley, 1996. "A nonparametric measure of spatial interaction in point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 50(3), pages 344-361, November.
    5. Ferraty, Frederic & Vieu, Philippe & Viguier-Pla, Sylvie, 2007. "Factor-based comparison of groups of curves," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4903-4910, June.
    6. A. J. Baddeley & J. Møller & R. Waagepetersen, 2000. "Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 329-350, November.
    7. Tomasz Górecki & Łukasz Smaga, 2015. "A comparison of tests for the one-way ANOVA problem for functional data," Computational Statistics, Springer, vol. 30(4), pages 987-1010, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuichi Goto & Koichi Arakaki & Yan Liu & Masanobu Taniguchi, 2023. "Homogeneity tests for one-way models with dependent errors under correlated groups," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 163-183, March.
    2. Yuichi Goto & Kotone Suzuki & Xiaofei Xu & Masanobu Taniguchi, 2023. "Tests for the existence of group effects and interactions for two-way models with dependent errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 511-532, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Guo & Bu Zhou & Jianwei Chen & Jin-Ting Zhang, 2019. "An $${{\varvec{L}}}^{2}$$L2-norm-based test for equality of several covariance functions: a further study," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1092-1112, December.
    2. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    3. Ana Maria Aguilera & Francesca Fortuna & Manuel Escabias & Tonio Di Battista, 2021. "Assessing Social Interest in Burnout Using Google Trends Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 587-599, August.
    4. Łukasz Smaga, 2020. "A note on repeated measures analysis for functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 117-139, March.
    5. Qiu, Zhiping & Fan, Jiangyuan & Zhang, Jin-Ting & Chen, Jianwei, 2024. "Tests for equality of several covariance matrix functions for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    6. Huang, Wei-Hsueh & Huang, Li-Shan & Yang, Cheng-Tao, 2022. "Invariant tests for functional data with application to an earthquake impact study," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Christian Ritz & Jens C. Streibig, 2009. "Functional Regression Analysis of Fluorescence Curves," Biometrics, The International Biometric Society, vol. 65(2), pages 609-617, June.
    8. Łukasz Smaga & Jin‐Ting Zhang, 2020. "Linear hypothesis testing for weighted functional data with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 493-515, June.
    9. Zhang, Jin-Ting & Cheng, Ming-Yen & Wu, Hau-Tieng & Zhou, Bu, 2019. "A new test for functional one-way ANOVA with applications to ischemic heart screening," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 3-17.
    10. T. Górecki & Ł. Smaga, 2017. "Multivariate analysis of variance for functional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2172-2189, September.
    11. Baddeley, Adrian & Hardegen, Andrew & Lawrence, Thomas & Milne, Robin K. & Nair, Gopalan & Rakshit, Suman, 2017. "On two-stage Monte Carlo tests of composite hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 75-87.
    12. Laura Anton-Sanchez & Pedro Larrañaga & Ruth Benavides-Piccione & Isabel Fernaud-Espinosa & Javier DeFelipe & Concha Bielza, 2017. "Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-14, June.
    13. Gina-Maria Pomann & Ana-Maria Staicu & Sujit Ghosh, 2016. "A two-sample distribution-free test for functional data with application to a diffusion tensor imaging study of multiple sclerosis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 395-414, April.
    14. Tomáš Mrkvička & Tomáš Roskovec & Michael Rost, 2021. "A Nonparametric Graphical Tests of Significance in Functional GLM," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 593-612, June.
    15. Christian Acal & Ana M. Aguilera, 2023. "Basis expansion approaches for functional analysis of variance with repeated measures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 291-321, June.
    16. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    17. Hlávka, Zdeněk & Hlubinka, Daniel & Koňasová, Kateřina, 2022. "Functional ANOVA based on empirical characteristic functionals," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Tomasz Górecki & Łukasz Smaga, 2019. "fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data," Computational Statistics, Springer, vol. 34(2), pages 571-597, June.
    19. Rafael Meléndez & Ramón Giraldo & Víctor Leiva, 2020. "Sign, Wilcoxon and Mann-Whitney Tests for Functional Data: An Approach Based on Random Projections," Mathematics, MDPI, vol. 9(1), pages 1-11, December.
    20. István Berkes & Robertas Gabrys & Lajos Horváth & Piotr Kokoszka, 2009. "Detecting changes in the mean of functional observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 927-946, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:30:y:2021:i:4:d:10.1007_s11749-021-00768-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.