IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A Studentized Permutation Test for the Comparison of Spatial Point Patterns

Listed author(s):
  • Ute Hahn
Registered author(s):

    In this study, a new test is proposed for the hypothesis that two (or more) observed point patterns are realizations of the same spatial point process model. To this end, the point patterns are divided into disjoint quadrats, on each of which an estimate of Ripley’s K -function is calculated. The two groups of empirical K -functions are compared by a permutation test using a Studentized test statistic. The proposed test performs convincingly in terms of empirical level and power in a simulation study, even for point patterns where the K -function estimates on neighboring subsamples are not strictly exchangeable. It also shows improved behavior compared with a test suggested by Diggle et al. for the comparison of groups of independently replicated point patterns. In an application to two point patterns from pathology that represent capillary positions in sections of healthy and cancerous tissue, our Studentized permutation test indicates statistical significance, although the patterns cannot be clearly distinguished by the eye.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 498 (June)
    Pages: 754-764

    in new window

    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:754-764
    DOI: 10.1080/01621459.2012.688463
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:754-764. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.