Semiparametric mixture regression with unspecified error distributions
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-020-00725-z
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Bordes, Laurent & Chauveau, Didier & Vandekerkhove, Pierre, 2007. "A stochastic EM algorithm for a semiparametric mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5429-5443, July.
- Jiahua Chen & Pengfei Li & Yuejiao Fu, 2012. "Inference on the Order of a Normal Mixture," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1096-1105, September.
- Mian Huang & Runze Li & Shaoli Wang, 2013. "Nonparametric Mixture of Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 929-941, September.
- M. Levine & D. R. Hunter & D. Chauveau, 2011. "Maximum smoothed likelihood for multivariate mixtures," Biometrika, Biometrika Trust, vol. 98(2), pages 403-416.
- Li, Pengfei & Chen, Jiahua, 2010. "Testing the Order of a Finite Mixture," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1084-1092.
- Xiang, Sijia & Yao, Weixin & Seo, Byungtae, 2016. "Semiparametric mixture: Continuous scale mixture approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 413-425.
- Wang, Shaoli & Huang, Mian & Wu, Xing & Yao, Weixin, 2016. "Mixture of functional linear models and its application to CO2-GDP functional data," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 1-15.
- Mian Huang & Weixin Yao & Shaoli Wang & Yixin Chen, 2018. "Statistical Inference and Applications of Mixture of Varying Coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(3), pages 618-643, September.
- Sijia Xiang & Weixin Yao, 2018. "Semiparametric mixtures of nonparametric regressions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 131-154, February.
- Mian Huang & Weixin Yao, 2012. "Mixture of Regression Models With Varying Mixing Proportions: A Semiparametric Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 711-724, June.
- Hu, Hao & Wu, Yichao & Yao, Weixin, 2016. "Maximum likelihood estimation of the mixture of log-concave densities," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 137-147.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sangkon Oh & Byungtae Seo, 2024. "Semiparametric mixture of linear regressions with nonparametric Gaussian scale mixture errors," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(1), pages 5-31, March.
- Jiacheng Xue & Weixin Yao & Sijia Xiang, 2025. "Machine learning embedded EM algorithms for semiparametric mixture regression models," Computational Statistics, Springer, vol. 40(1), pages 205-224, January.
- Nam-Hwui Kim & Ryan P. Browne, 2024. "Flexible mixture regression with the generalized hyperbolic distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(1), pages 33-60, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
- Sijia Xiang & Weixin Yao, 2020. "Semiparametric mixtures of regressions with single-index for model based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 261-292, June.
- Sphiwe B. Skhosana & Salomon M. Millard & Frans H. J. Kanfer, 2023. "A Novel EM-Type Algorithm to Estimate Semi-Parametric Mixtures of Partially Linear Models," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
- Mazo, Gildas & Averyanov, Yaroslav, 2019. "Constraining kernel estimators in semiparametric copula mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 170-189.
- Xue, Jiacheng & Yao, Weixin, 2022. "Machine Learning Embedded Semiparametric Mixtures of Regressions with Covariate-Varying Mixing Proportions," Econometrics and Statistics, Elsevier, vol. 22(C), pages 159-171.
- Jiacheng Xue & Weixin Yao & Sijia Xiang, 2025. "Machine learning embedded EM algorithms for semiparametric mixture regression models," Computational Statistics, Springer, vol. 40(1), pages 205-224, January.
- You, Na & Dai, Hongsheng & Wang, Xueqin & Yu, Qingyun, 2024. "Sequential estimation for mixture of regression models for heterogeneous population," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
- Marco Berrettini & Giuliano Galimberti & Saverio Ranciati, 2023. "Semiparametric finite mixture of regression models with Bayesian P-splines," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 745-775, September.
- Holzmann, Hajo & Schwaiger, Florian, 2016. "Testing for the number of states in hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 318-330.
- Hou, Yanxi & Li, Jiahong & Gao, Guangyuan, 2025. "Insurance loss modeling with gradient tree-boosted mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 121(C), pages 45-62.
- Abbas Khalili & Farhad Shokoohi & Masoud Asgharian & Shili Lin, 2023. "Sparse estimation in semiparametric finite mixture of varying coefficient regression models," Biometrics, The International Biometric Society, vol. 79(4), pages 3445-3457, December.
- Hoshino Tadao & Yanagi Takahide, 2022.
"Estimating marginal treatment effects under unobserved group heterogeneity,"
Journal of Causal Inference, De Gruyter, vol. 10(1), pages 197-216, January.
- Tadao Hoshino & Takahide Yanagi, 2020. "Estimating Marginal Treatment Effects under Unobserved Group Heterogeneity," Papers 2001.09560, arXiv.org, revised May 2022.
- Chauveau, Didier & Hoang, Vy Thuy Lynh, 2016. "Nonparametric mixture models with conditionally independent multivariate component densities," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 1-16.
- Qi, Xuefei & Xu, Xingbai & Feng, Zhenghui & Peng, Heng, 2025. "Component selection and variable selection for mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 206(C).
- Kasahara Hiroyuki & Shimotsu Katsumi, 2012.
"Testing the Number of Components in Finite Mixture Models,"
Global COE Hi-Stat Discussion Paper Series
gd12-259, Institute of Economic Research, Hitotsubashi University.
- Hiroyuki Kasahara & Katsumi Shimotsu, 2012. "Testing the Number of Components in Finite Mixture Models," CIRJE F-Series CIRJE-F-867, CIRJE, Faculty of Economics, University of Tokyo.
- Hiroyuki Kasahara & Katsumi Shimotsu, 2017.
"Testing the Order of Multivariate Normal Mixture Models,"
CIRJE F-Series
CIRJE-F-1044, CIRJE, Faculty of Economics, University of Tokyo.
- Hiroyuki Kasahara & Katsumi Shimotsu, 2019. "Testing the Order of Multivariate Normal Mixture Models," Papers 1902.02920, arXiv.org.
- Wichitchan, Supawadee & Yao, Weixin & Yang, Guangren, 2019. "Hypothesis testing for finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 180-189.
- Sijia Xiang & Weixin Yao, 2018. "Semiparametric mixtures of nonparametric regressions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 131-154, February.
- Xiaotian Zhu & David R. Hunter, 2019. "Clustering via finite nonparametric ICA mixture models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 65-87, March.
- Gildas Mazo, 2017. "A Semiparametric and Location-Shift Copula-Based Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 34(3), pages 444-464, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:30:y:2021:i:2:d:10.1007_s11749-020-00725-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.