IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v28y2019i2d10.1007_s11749-019-00646-6.html
   My bibliography  Save this article

Comments on: Data science, big data and statistics

Author

Listed:
  • Peter Bühlmann

    (ETH Zürich)

Abstract

We congratulate Pedro Galeano and Daniel Peña for a nice paper on the emerging theme of data science and the role of statistics.

Suggested Citation

  • Peter Bühlmann, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 330-333, June.
  • Handle: RePEc:spr:testjl:v:28:y:2019:i:2:d:10.1007_s11749-019-00646-6
    DOI: 10.1007/s11749-019-00646-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-019-00646-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-019-00646-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonas Peters & Peter Bühlmann & Nicolai Meinshausen, 2016. "Causal inference by using invariant prediction: identification and confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 947-1012, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    2. Fangting Zhou & Kejun He & Yang Ni, 2023. "Individualized causal discovery with latent trajectory embedded Bayesian networks," Biometrics, The International Biometric Society, vol. 79(4), pages 3191-3202, December.
    3. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2022. "How effective is carbon pricing?—A machine learning approach to policy evaluation," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    4. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, vol. 8(2), pages 1-24, May.
    5. Hang Su & Wei Wang, 2023. "An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment," Mathematics, MDPI, vol. 12(1), pages 1-21, December.
    6. Peter Bühlmann & Domagoj Ćevid, 2020. "Deconfounding and Causal Regularisation for Stability and External Validity," International Statistical Review, International Statistical Institute, vol. 88(S1), pages 114-134, December.
    7. Katerina Rigana & Ernst C. Wit & Samantha Cook, 2024. "Navigating Market Turbulence: Insights from Causal Network Contagion Value at Risk," Papers 2402.06032, arXiv.org.
    8. Martin Emil Jakobsen & Jonas Peters, 2022. "Distributional robustness of K-class estimators and the PULSE [The colonial origins of comparative development: An empirical investigation]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 404-432.
    9. Guillaume Coqueret, 2023. "Forking paths in financial economics," Papers 2401.08606, arXiv.org.
    10. Lenz, Gabriel & Sahn, Alexander, 2017. "Achieving Statistical Significance with Covariates and without Transparency," MetaArXiv s42ba, Center for Open Science.
    11. Martin Emil Jakobsen & Jonas Peters, 2020. "Distributional robustness of K-class estimators and the PULSE," Papers 2005.03353, arXiv.org, revised Mar 2022.
    12. Wang, Bingling & Zhou, Qing, 2021. "Causal network learning with non-invertible functional relationships," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    13. Lihua Lei & Emmanuel J. Candès, 2021. "Conformal inference of counterfactuals and individual treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 911-938, November.
    14. Anton Rask Lundborg & Rajen D. Shah & Jonas Peters, 2022. "Conditional independence testing in Hilbert spaces with applications to functional data analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1821-1850, November.
    15. Christian Gische & Manuel C. Voelkle, 2022. "Beyond the Mean: A Flexible Framework for Studying Causal Effects Using Linear Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 868-901, September.
    16. Linda Mhalla & Valérie Chavez‐Demoulin & Debbie J. Dupuis, 2020. "Causal mechanism of extreme river discharges in the upper Danube basin network," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 741-764, August.
    17. Huang, Xianzheng & Zhang, Hongmei, 2021. "Tests for differential Gaussian Bayesian networks based on quadratic inference functions," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    18. Bühlmann, Peter & van de Geer, Sara, 2018. "Statistics for big data: A perspective," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 37-41.
    19. Federico Castelletti & Guido Consonni, 2020. "Discovering causal structures in Bayesian Gaussian directed acyclic graph models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1727-1745, October.
    20. Dominik Rothenhäusler & Nicolai Meinshausen & Peter Bühlmann & Jonas Peters, 2021. "Anchor regression: Heterogeneous data meet causality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 215-246, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:28:y:2019:i:2:d:10.1007_s11749-019-00646-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.