IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v27y2018i3d10.1007_s11749-017-0566-y.html
   My bibliography  Save this article

Bootstrap in semi-functional partial linear regression under dependence

Author

Listed:
  • Germán Aneiros

    (Universidade da Coruña)

  • Paula Raña

    (Universidade da Coruña)

  • Philippe Vieu

    (Université Paul Sabatier)

  • Juan Vilar

    (Universidade da Coruña)

Abstract

This paper deals with the semi-functional partial linear regression model $$Y={{\varvec{X}}}^\mathrm{T}{\varvec{\beta }}+m({\varvec{\chi }})+\varepsilon $$ Y = X T β + m ( χ ) + ε under $$\alpha $$ α -mixing conditions. $${\varvec{\beta }} \in \mathbb {R}^{p}$$ β ∈ R p and $$m(\cdot )$$ m ( · ) denote an unknown vector and an unknown smooth real-valued operator, respectively. The covariates $${{\varvec{X}}}$$ X and $${\varvec{\chi }}$$ χ are valued in $$\mathbb {R}^{p}$$ R p and some infinite-dimensional space, respectively, and the random error $$\varepsilon $$ ε verifies $$\mathbb {E}(\varepsilon |{{\varvec{X}}},{\varvec{\chi }})=0$$ E ( ε | X , χ ) = 0 . Naïve and wild bootstrap procedures are proposed to approximate the distribution of kernel-based estimators of $${\varvec{\beta }}$$ β and $$m(\chi )$$ m ( χ ) , and their asymptotic validities are obtained. A simulation study shows the behavior (on finite sample sizes) of the proposed bootstrap methodology when applied to construct confidence intervals, while an application to real data concerning electricity market illustrates its usefulness in practice.

Suggested Citation

  • Germán Aneiros & Paula Raña & Philippe Vieu & Juan Vilar, 2018. "Bootstrap in semi-functional partial linear regression under dependence," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 659-679, September.
  • Handle: RePEc:spr:testjl:v:27:y:2018:i:3:d:10.1007_s11749-017-0566-y
    DOI: 10.1007/s11749-017-0566-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-017-0566-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-017-0566-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Karl B. Gregory & Soumendra N. Lahiri & Daniel J. Nordman, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 442-461, May.
    2. Frédéric Ferraty & Ingrid Van Keilegom & Philippe Vieu, 2010. "On the Validity of the Bootstrap in Non‐Parametric Functional Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 286-306, June.
    3. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Dominique Dehay & Anna E. Dudek, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 327-351, May.
    4. Han Lin Shang, 2013. "Functional time series approach for forecasting very short-term electricity demand," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    5. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Patrice Bertail & Stéphan Clémençon & Jessica Tressou, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 462-480, May.
    6. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    7. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2006. "On the use of the bootstrap for estimating functions with functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1063-1074, November.
    8. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Carsten Jentsch & Dimitris N. Politis & Efstathios Paparoditis, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 416-441, May.
    9. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 269-271, May.
    10. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Marco Meyer & Jens-Peter Kreiss, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 377-397, May.
    11. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    12. Aneiros-Pérez, Germán & Vieu, Philippe, 2008. "Nonparametric time series prediction: A semi-functional partial linear modeling," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 834-857, May.
    13. Bücher, Axel & Dette, Holger & Wieczorek, Gabriele, 2011. "Testing model assumptions in functional regression models," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1472-1488, November.
    14. Ferraty, Frederic & Van Keilegom, Ingrid & Vieu, Philippe, 2010. "On the Validity of the Bootstrap in Non-Parametric Functional Regression," LIDAM Reprints ISBA 2010018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Aneiros-Pérez, Germán & Vieu, Philippe, 2006. "Semi-functional partial linear regression," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1102-1110, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Slaoui, Yousri, 2019. "Wild bootstrap bandwidth selection of recursive nonparametric relative regression for independent functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 494-511.
    2. Ping Yu & Ting Li & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Composite quantile estimation in partial functional linear regression model with dependent errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(6), pages 633-656, August.
    3. Tang, Qingguo & Tu, Wei & Kong, Linglong, 2023. "Estimation for partial functional partially linear additive model," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    4. Rongjie Jiang & Liming Wang & Yang Bai, 2021. "Optimal model averaging estimator for semi-functional partially linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 167-194, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuzhi Zhu & Peixin Zhao, 2019. "Tests for the linear hypothesis in semi-functional partial linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 125-148, March.
    2. Slaoui, Yousri, 2019. "Wild bootstrap bandwidth selection of recursive nonparametric relative regression for independent functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 494-511.
    3. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    4. Shang, Han Lin, 2016. "A Bayesian approach for determining the optimal semi-metric and bandwidth in scalar-on-function quantile regression with unknown error density and dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 95-104.
    5. Laurent Delsol, 2013. "No effect tests in regression on functional variable and some applications to spectrometric studies," Computational Statistics, Springer, vol. 28(4), pages 1775-1811, August.
    6. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    7. Yousri Slaoui, 2020. "Recursive nonparametric regression estimation for dependent strong mixing functional data," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 665-697, October.
    8. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    9. Martínez-Camblor, Pablo & Corral, Norberto, 2011. "Repeated measures analysis for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3244-3256, December.
    10. Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    11. Shuyu Meng & Zhensheng Huang, 2024. "Variable Selection in Semi-Functional Partially Linear Regression Models with Time Series Data," Mathematics, MDPI, vol. 12(17), pages 1-23, September.
    12. González-Rodríguez, Gil & Colubi, Ana, 2017. "On the consistency of bootstrap methods in separable Hilbert spaces," Econometrics and Statistics, Elsevier, vol. 1(C), pages 118-127.
    13. Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
    14. Ding, Hui & Lu, Zhiping & Zhang, Jian & Zhang, Riquan, 2018. "Semi-functional partial linear quantile regression," Statistics & Probability Letters, Elsevier, vol. 142(C), pages 92-101.
    15. Liebl, Dominik & Walders, Fabian, 2019. "Parameter regimes in partial functional panel regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 105-115.
    16. Germán Aneiros-Pérez & Philippe Vieu, 2013. "Testing linearity in semi-parametric functional data analysis," Computational Statistics, Springer, vol. 28(2), pages 413-434, April.
    17. Jianjun Zhou & Zhao Chen & Qingyan Peng, 2016. "Polynomial spline estimation for partial functional linear regression models," Computational Statistics, Springer, vol. 31(3), pages 1107-1129, September.
    18. Zhou, Jianjun & Chen, Min, 2012. "Spline estimators for semi-functional linear model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 505-513.
    19. Wu, Chaojiang & Yu, Yan, 2014. "Partially linear modeling of conditional quantiles using penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 170-187.
    20. Bin Yang & Min Chen & Tong Su & Jianjun Zhou, 2023. "Robust Estimation for Semi-Functional Linear Model with Autoregressive Errors," Mathematics, MDPI, vol. 11(2), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:27:y:2018:i:3:d:10.1007_s11749-017-0566-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.