IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v25y2016i1p170-195.html
   My bibliography  Save this article

Global and local distance-based generalized linear models

Author

Listed:
  • Eva Boj
  • Adrià Caballé
  • Pedro Delicado
  • Anna Esteve
  • Josep Fortiana

Abstract

This paper introduces local distance-based generalized linear models. These models extend (weighted) distance-based linear models first to the generalized linear model framework. Then, a nonparametric version of these models is proposed by means of local fitting. Distances between individuals are the only predictor information needed to fit these models. Therefore, they are applicable, among others, to mixed (qualitative and quantitative) explanatory variables or when the regressor is of functional type. An implementation is provided by the R package dbstats, which also implements other distance-based prediction methods. Supplementary material for this article is available online, which reproduces all the results of this article. Copyright Sociedad de Estadística e Investigación Operativa 2016

Suggested Citation

  • Eva Boj & Adrià Caballé & Pedro Delicado & Anna Esteve & Josep Fortiana, 2016. "Global and local distance-based generalized linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 170-195, March.
  • Handle: RePEc:spr:testjl:v:25:y:2016:i:1:p:170-195
    DOI: 10.1007/s11749-015-0447-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-015-0447-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-015-0447-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Hallin & Jean-François Ingenbleek, 1983. "The Swedish automobile portfolio in 1977: a statistical study," ULB Institutional Repository 2013/1997, ULB -- Universite Libre de Bruxelles.
    2. Carter T. Butts & Kathleen M. Carley, 2005. "Some Simple Algorithms for Structural Comparison," Computational and Mathematical Organization Theory, Springer, vol. 11(4), pages 291-305, December.
    3. Eva Boj & Aurea Grané & Josep Fortiana & M. Claramunt, 2007. "Implementing PLS for distance-based regression: computational issues," Computational Statistics, Springer, vol. 22(2), pages 237-248, July.
    4. David Banks & Kathleen Carley, 1994. "Metric inference for social networks," Journal of Classification, Springer;The Classification Society, vol. 11(1), pages 121-149, March.
    5. Manuel Febrero-Bande & Wenceslao González-Manteiga, 2013. "Generalized additive models for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 278-292, June.
    6. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beibei Yuan & Willem Heiser & Mark Rooij, 2019. "The δ-Machine: Classification Based on Distances Towards Prototypes," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 442-470, October.
    2. Amparo Baíllo & Aurea Grané, 2021. "Subsampling and Aggregation: A Solution to the Scalability Problem in Distance-Based Prediction for Mixed-Type Data," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    3. S. Barahona & P. Centella & X. Gual-Arnau & M. V. Ibáñez & A. Simó, 2020. "Supervised classification of geometrical objects by integrating currents and functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 637-660, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eva Boj & Pedro Delicado & Josep Fortiana & Anna Esteve & Adria Caballe, 2012. "Local Distance-Based Generalized Linear Models using the dbstats package for R," Working Papers XREAP2012-11, Xarxa de Referència en Economia Aplicada (XREAP), revised May 2012.
    2. Kume, Alfred & Hashorva, Enkelejd, 2012. "Calculation of Bayes premium for conditional elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 632-635.
    3. Tesfatsion, Leigh, 1998. "Ex Ante Capacity Effects in Evolutionary Labor Markets with Adaptive Search," ISU General Staff Papers 199810010700001046, Iowa State University, Department of Economics.
    4. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    5. Mohamed Amine Lkabous & Jean-François Renaud, 2018. "A VaR-Type Risk Measure Derived from Cumulative Parisian Ruin for the Classical Risk Model," Risks, MDPI, vol. 6(3), pages 1-11, August.
    6. Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.
    7. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    8. François Freddy Ateba & Manuel Febrero-Bande & Issaka Sagara & Nafomon Sogoba & Mahamoudou Touré & Daouda Sanogo & Ayouba Diarra & Andoh Magdalene Ngitah & Peter J. Winch & Jeffrey G. Shaffer & Donald, 2020. "Predicting Malaria Transmission Dynamics in Dangassa, Mali: A Novel Approach Using Functional Generalized Additive Models," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    9. Tesfatsion, Leigh, 1998. "Preferential Partner Selection in Evolutionary Labor Markets: A Study in Agent-Based Computational Economics," Staff General Research Papers Archive 2048, Iowa State University, Department of Economics.
    10. Kaluszka, M. & Laeven, R.J.A. & Okolewski, A., 2012. "A note on weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 379-381.
    11. Fang, Jun & Jiang, Fan & Liu, Yong & Yang, Jingping, 2020. "Copula-based Markov process," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 166-187.
    12. Carter T. Butts & Kathleen M. Carley, 2005. "Some Simple Algorithms for Structural Comparison," Computational and Mathematical Organization Theory, Springer, vol. 11(4), pages 291-305, December.
    13. Manuel Febrero-Bande & Wenceslao González-Manteiga & Manuel Oviedo de la Fuente, 2019. "Variable selection in functional additive regression models," Computational Statistics, Springer, vol. 34(2), pages 469-487, June.
    14. Tesfatsion, Leigh, 1998. "Teaching Agent-Based Computational Economics To Graduate Students," Economic Reports 18193, Iowa State University, Department of Economics.
    15. Dan Zhu & Ming Zhou & Chuancun Yin, 2023. "Finite-Time Ruin Probabilities of Bidimensional Risk Models with Correlated Brownian Motions," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    16. Cheung, Ka Chun & Lo, Ambrose, 2013. "General lower bounds on convex functionals of aggregate sums," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 884-896.
    17. Van Weert, Koen & Dhaene, Jan & Goovaerts, Marc, 2010. "Optimal portfolio selection for general provisioning and terminal wealth problems," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 90-97, August.
    18. Tesfatsion, Leigh, 1998. "Gale-Shapley Matching in an Evolutionary Trade Network Game," ISU General Staff Papers 199804010800001041, Iowa State University, Department of Economics.
    19. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.
    20. Claude Lefèvre & Stéphane Loisel, 2013. "On multiply monotone distributions, continuous or discrete, with applications," Post-Print hal-00750562, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:25:y:2016:i:1:p:170-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.