IDEAS home Printed from https://ideas.repec.org/a/spr/syspar/v29y2016i5d10.1007_s11213-016-9374-7.html
   My bibliography  Save this article

Critical Systems Thinking on the Inefficiency in Post-Earthquake Relief: A Practice in Longmen Shan Fault Area

Author

Listed:
  • Jiuping Xu

    (Sichuan University)

  • Jiuzhou Dai

    (Sichuan University)

  • Renqiao Rao

    (Sichuan University)

  • Huaidong Xie

    (Sichuan University)

  • Yi Lu

    (Sichuan University)

Abstract

The Longmen Shan Fault area is one of the most active seismic zones in the world, has a relatively dense population and a low economic development level. Therefore, the provision of effective post-earthquake relief is very important for saving lives and restricting financial losses. However, providing urgent relief is a complex problem that requires efficient coordination between the organizations, and departments involved, and the specific environments, for the supply of urgent materials, energy and information. In practice, although there are sufficient relief supplies, because of the lack of systemic thinking, relief activities are often chaotic leading to inefficiencies and even increases in the damage and loss of life. In this study, a critical systems thinking approach is used to reflect on the system contexts, boundaries, structures and functions of the emergency relief systems. Using systems modeling we constructed simulations for different relief plans and their consequences, and a work shop of metasynthetic engineering was constructed to integrate the different views, knowledge and contexts. At the practical stage, after the model’s validity was verified from the 2008 Wenchuan earthquake data, based on the 2013 Lushan earthquake simulation results, some recommendations are made to improve future post-disaster relief operations. Finally, the significance of critical systems thinking is demonstrated to ensure effective and efficient of post-earthquake relief. Some limitations and future research also have been presented in conclusion.

Suggested Citation

  • Jiuping Xu & Jiuzhou Dai & Renqiao Rao & Huaidong Xie & Yi Lu, 2016. "Critical Systems Thinking on the Inefficiency in Post-Earthquake Relief: A Practice in Longmen Shan Fault Area," Systemic Practice and Action Research, Springer, vol. 29(5), pages 425-448, October.
  • Handle: RePEc:spr:syspar:v:29:y:2016:i:5:d:10.1007_s11213-016-9374-7
    DOI: 10.1007/s11213-016-9374-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11213-016-9374-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11213-016-9374-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H J Wong & D Morra & R C Wu & M Caesar & H Abrams, 2012. "Using system dynamics principles for conceptual modelling of publicly funded hospitals," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(1), pages 79-88, January.
    2. Tzeng, Gwo-Hshiung & Cheng, Hsin-Jung & Huang, Tsung Dow, 2007. "Multi-objective optimal planning for designing relief delivery systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 673-686, November.
    3. Jackson, Mike C., 2001. "Critical systems thinking and practice," European Journal of Operational Research, Elsevier, vol. 128(2), pages 233-244, January.
    4. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    5. Edrissi, Ali & Poorzahedy, Hossain & Nassiri, Habibollah & Nourinejad, Mehdi, 2013. "A multi-agent optimization formulation of earthquake disaster prevention and management," European Journal of Operational Research, Elsevier, vol. 229(1), pages 261-275.
    6. Dirk Helbing, 2013. "Globally networked risks and how to respond," Nature, Nature, vol. 497(7447), pages 51-59, May.
    7. Lu, Chung-Cheng, 2013. "Robust weighted vertex p-center model considering uncertain data: An application to emergency management," European Journal of Operational Research, Elsevier, vol. 230(1), pages 113-121.
    8. M C Jackson, 2009. "Fifty years of systems thinking for management," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 24-32, May.
    9. Hiroo Kanamori, 2012. "Putting seismic research to most effective use," Nature, Nature, vol. 483(7388), pages 147-148, March.
    10. Jiuping Xu & Yi Lu, 2012. "Meta-synthesis pattern of post-disaster recovery and reconstruction: based on actual investigation on 2008 Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 199-222, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang, Liu, 2020. "Energy emergency supply chain collaboration optimization with group consensus through reinforcement learning considering non-cooperative behaviours," Energy, Elsevier, vol. 210(C).
    2. Vladislav Valentinov & Martina Bolečeková & Gabriela Vaceková, 2017. "The Nonprofit Response to the Migration Crisis: Systems-Theoretic Reflections on the Austrian and Slovak Experiences," Systemic Practice and Action Research, Springer, vol. 30(6), pages 651-661, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Disaster preparedness in humanitarian logistics: A collaborative approach for resource management in floods," European Journal of Operational Research, Elsevier, vol. 264(3), pages 978-993.
    2. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    3. Rezaei-Malek, Mohammad & Tavakkoli-Moghaddam, Reza & Cheikhrouhou, Naoufel & Taheri-Moghaddam, Alireza, 2016. "An approximation approach to a trade-off among efficiency, efficacy, and balance for relief pre-positioning in disaster management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 485-509.
    4. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    5. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    6. Acar, Müge & Kaya, Onur, 2019. "A healthcare network design model with mobile hospitals for disaster preparedness: A case study for Istanbul earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 273-292.
    7. Rennemo, Sigrid Johansen & Rø, Kristina Fougner & Hvattum, Lars Magnus & Tirado, Gregorio, 2014. "A three-stage stochastic facility routing model for disaster response planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 116-135.
    8. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    9. Peiyu Zhang & Yankui Liu & Guoqing Yang & Guoqing Zhang, 2022. "A multi-objective distributionally robust model for sustainable last mile relief network design problem," Annals of Operations Research, Springer, vol. 309(2), pages 689-730, February.
    10. Masoud Mahootchi & Sajjad Golmohammadi, 2018. "Developing a new stochastic model considering bi-directional relations in a natural disaster: a possible earthquake in Tehran (the Capital of Islamic Republic of Iran)," Annals of Operations Research, Springer, vol. 269(1), pages 439-473, October.
    11. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    12. Ali Ekici & Okan Örsan Özener, 2020. "Inventory routing for the last mile delivery of humanitarian relief supplies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 621-660, September.
    13. Shu, Jia & Lv, Wenya & Na, Qing, 2021. "Humanitarian relief supply network design: Expander graph based approach and a case study of 2013 Flood in Northeast China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    14. Paul, Jomon A. & Wang, Xinfang (Jocelyn), 2019. "Robust location-allocation network design for earthquake preparedness," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 139-155.
    15. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    16. Moddassir Khan Nayeem & Gyu M. Lee, 2021. "Robust Design of Relief Distribution Networks Considering Uncertainty," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    17. Loree, Nick & Aros-Vera, Felipe, 2018. "Points of distribution location and inventory management model for Post-Disaster Humanitarian Logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 1-24.
    18. John B. Coles & Jing Zhang & Jun Zhuang, 2022. "Bridging the research-practice gap in disaster relief: using the IFRC Code of Conduct to develop an aid model," Annals of Operations Research, Springer, vol. 312(2), pages 1337-1357, May.
    19. Ahmadi, Morteza & Seifi, Abbas & Tootooni, Behnam, 2015. "A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 145-163.
    20. Paul, Jomon Aliyas & Wang, Xinfang (Jocelyn), 2015. "Robust optimization for United States Department of Agriculture food aid bid allocations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 129-146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:syspar:v:29:y:2016:i:5:d:10.1007_s11213-016-9374-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.