IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v25y2016i1p125-141.html
   My bibliography  Save this article

New compactly supported spatiotemporal covariance functions from SPDEs

Author

Listed:
  • M. Ruiz-Medina
  • J. Angulo
  • G. Christakos
  • R. Fernández-Pascual

Abstract

Potential theory and Dirichlet’s priciple constitute the basic elements of the well-known classical theory of Markov processes and Dirichlet forms. This paper presents new classes of fractional spatiotemporal covariance models, based on the theory of non-local Dirichlet forms, characterizing the fundamental solution, Green kernel, of Dirichlet boundary value problems for fractional pseudodifferential operators. The elements of the associated Gaussian random field family have compactly supported non-separable spatiotemporal covariance kernels admitting a parametric representation. Indeed, such covariance kernels are not self-similar but can display local self-similarity, interpolating regular and fractal local behavior in space and time. The associated local fractional exponents are estimated from the empirical log-wavelet variogram. Numerical examples are simulated for illustrating the properties of the space–time covariance model class introduced. Copyright Springer-Verlag Berlin Heidelberg 2016

Suggested Citation

  • M. Ruiz-Medina & J. Angulo & G. Christakos & R. Fernández-Pascual, 2016. "New compactly supported spatiotemporal covariance functions from SPDEs," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 125-141, March.
  • Handle: RePEc:spr:stmapp:v:25:y:2016:i:1:p:125-141
    DOI: 10.1007/s10260-015-0333-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-015-0333-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-015-0333-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael L. Stein, 2005. "Space-Time Covariance Functions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 310-321, March.
    2. Gneiting, Tilmann, 2002. "Compactly Supported Correlation Functions," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 493-508, November.
    3. Gneiting, Tilmann & Kleiber, William & Schlather, Martin, 2010. "Matérn Cross-Covariance Functions for Multivariate Random Fields," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1167-1177.
    4. Porcu, Emilio & Zastavnyi, Viktor, 2011. "Characterization theorems for some classes of covariance functions associated to vector valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1293-1301, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    2. Alonso-Malaver, C.E. & Porcu, E. & Giraldo, R., 2015. "Multivariate and multiradial Schoenberg measures with their dimension walks," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 251-265.
    3. Moreva, Olga & Schlather, Martin, 2023. "Bivariate covariance functions of Pólya type," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    4. S. De Iaco & M. Palma & D. Posa, 2013. "Prediction of particle pollution through spatio-temporal multivariate geostatistical analysis: spatial special issue," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 133-150, April.
    5. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Emilio Porcu & Moreno Bevilacqua & Marc G. Genton, 2016. "Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 888-898, April.
    7. Cavoretto, Roberto & De Rossi, Alessandra & Qiao, Hanli, 2018. "Topology analysis of global and local RBF transformations for image registration," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 147(C), pages 52-72.
    8. Guella, Jean Carlo & Menegatto, Valdir Antonio & Porcu, Emilio, 2018. "Strictly positive definite multivariate covariance functions on spheres," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 150-159.
    9. Montero, José-María, 2018. "Geostatistics: Unde venis et quo vadis? /Geoestadística:¿De dónde vienes y a dónde vas?," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 81-106, Enero.
    10. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    11. Jun, Mikyoung, 2014. "Matérn-based nonstationary cross-covariance models for global processes," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 134-146.
    12. M. Bevilacqua & A. Fassò & C. Gaetan & E. Porcu & D. Velandia, 2016. "Covariance tapering for multivariate Gaussian random fields estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 21-37, March.
    13. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    14. Daniel Griffith, 2010. "Modeling spatio-temporal relationships: retrospect and prospect," Journal of Geographical Systems, Springer, vol. 12(2), pages 111-123, June.
    15. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    16. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    17. Hansen, Linda V. & Thorarinsdottir, Thordis L., 2013. "A note on moving average models for Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 850-855.
    18. Marcus L. Nascimento & Kelly C. M. Gonçalves & Mario Jorge Mendonça, 2023. "Spatio-Temporal Instrumental Variables Regression with Missing Data: A Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 29-47, June.
    19. Guillermo Ferreira & Jorge Mateu & Emilio Porcu, 2018. "Spatio-temporal analysis with short- and long-memory dependence: a state-space approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 221-245, March.
    20. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:25:y:2016:i:1:p:125-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.