IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v105i491y2010p1167-1177.html
   My bibliography  Save this article

Matérn Cross-Covariance Functions for Multivariate Random Fields

Author

Listed:
  • Gneiting, Tilmann
  • Kleiber, William
  • Schlather, Martin

Abstract

No abstract is available for this item.

Suggested Citation

  • Gneiting, Tilmann & Kleiber, William & Schlather, Martin, 2010. "Matérn Cross-Covariance Functions for Multivariate Random Fields," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1167-1177.
  • Handle: RePEc:bes:jnlasa:v:105:i:491:y:2010:p:1167-1177
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jasa.2010.tm09420
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. HÄRDLE, Wolfgang & HART, Jeffrey & MARRON, Steve & TSYBAKOV, Alexander, "undated". "Bandwith choice for average derivative estimation," CORE Discussion Papers RP 977, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    3. Whitney K. Newey & Fushing Hsieh & James M. Robins, 2004. "Twicing Kernels and a Small Bias Property of Semiparametric Estimators," Econometrica, Econometric Society, vol. 72(3), pages 947-962, May.
    4. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    5. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74 Elsevier.
    6. J. L. HOROWITZ & Wolfgang HÄRDLE, 1994. "Direct Semiparametric Estimation of Single - Index Models with Discrete Covariates," SFB 373 Discussion Papers 1994,36, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. Y. Nishiyama & P. M. Robinson, 2000. "Edgeworth Expansions for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 68(4), pages 931-980, July.
    8. Haerdle,Wolfgang & Stoker,Thomas, 1987. "Investigations smooth multiple regression by the method of average derivatives," Discussion Paper Serie A 107, University of Bonn, Germany.
    9. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2014. "Small Bandwidth Asymptotics For Density-Weighted Average Derivatives," Econometric Theory, Cambridge University Press, vol. 30(01), pages 176-200, February.
    10. Robinson, P M, 1995. "The Normal Approximation for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 63(3), pages 667-680, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun, Mikyoung, 2014. "Matérn-based nonstationary cross-covariance models for global processes," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 134-146.
    2. Li, Bo & Zhang, Hao, 2011. "An approach to modeling asymmetric multivariate spatial covariance structures," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1445-1453, November.
    3. Hansen, Linda V. & Thorarinsdottir, Thordis L., 2013. "A note on moving average models for Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 850-855.
    4. S. De Iaco & M. Palma & D. Posa, 2013. "Prediction of particle pollution through spatio-temporal multivariate geostatistical analysis: spatial special issue," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 133-150, April.
    5. Sara López-Pintado & Ying Sun & Juan Lin & Marc Genton, 2014. "Simplicial band depth for multivariate functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 321-338, September.
    6. M. Bevilacqua & A. Fassò & C. Gaetan & E. Porcu & D. Velandia, 2016. "Covariance tapering for multivariate Gaussian random fields estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 21-37, March.
    7. Kleijnen, Jack P.C. & Mehdad, Ehsan, 2014. "Multivariate versus univariate Kriging metamodels for multi-response simulation models," European Journal of Operational Research, Elsevier, vol. 236(2), pages 573-582.
    8. Moreno Bevilacqua & Ronny Vallejos & Daira Velandia, 2015. "Assessing the significance of the correlation between the components of a bivariate Gaussian random field," Environmetrics, John Wiley & Sons, Ltd., vol. 26(8), pages 545-556, December.
    9. repec:bla:jtsera:v:38:y:2017:i:5:p:668-710 is not listed on IDEAS
    10. M. D. Ruiz-Medina & J. M. Angulo & G. Christakos & R. Fernández-Pascual, 2016. "New compactly supported spatiotemporal covariance functions from SPDEs," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 125-141, March.
    11. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    12. Kleijnen, Jack P.C. & Mehdad, E., 2014. "Multivariate Versus Univariate Kriging Metamodels for Multi-Response Simulation Models (Revision of 2012-039)," Discussion Paper 2014-012, Tilburg University, Center for Economic Research.
    13. Alonso-Malaver, C.E. & Porcu, E. & Giraldo, R., 2015. "Multivariate and multiradial Schoenberg measures with their dimension walks," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 251-265.
    14. Li, Yuqiang & Xiao, Yimin, 2011. "Multivariate operator-self-similar random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1178-1200, June.
    15. repec:eee:stapro:v:130:y:2017:i:c:p:115-119 is not listed on IDEAS
    16. Furrer, Reinhard & Bachoc, François & Du, Juan, 2016. "Asymptotic properties of multivariate tapering for estimation and prediction," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 177-191.
    17. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    18. Kleijnen, Jack P.C. & Mehdad, E., 2012. "Kriging in Multi-response Simulation, including a Monte Carlo Laboratory (Replaced by 2014-012)," Discussion Paper 2012-039, Tilburg University, Center for Economic Research.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:105:i:491:y:2010:p:1167-1177. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.