Author
Listed:
- Andrea Cremaschi
(A*STAR
National University of Singapore)
- Wenjian Yang
(St Jude Children’s Research Hospital)
- Maria Iorio
(A*STAR
National University of Singapore
University College London)
- William E. Evans
(St Jude Children’s Research Hospital)
- Jun J. Yang
(St Jude Children’s Research Hospital)
- Gary L. Rosner
(Johns Hopkins School of Medicine)
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous haematologic malignancy involving the abnormal proliferation of immature lymphocytes and accounts for most paediatric cancer cases. The management of ALL in children has seen great improvement in the last decades thanks to greater understanding of the disease leading to improved treatment strategies evidenced through clinical trials. Common therapy regimens involve a first course of chemotherapy (induction phase), followed by treatment with a combination of anti-leukemia drugs. A measure of the efficacy early in the course of therapy is the presence of minimal residual disease (MRD). MRD quantifies residual tumor cells and indicates the effectiveness of the treatment over the course of therapy. MRD positivity is defined for values of MRD greater than 0.01%, yielding left-censored MRD observations. We propose a Bayesian model to study the relationship between patient features (leukemia subtype, baseline characteristics, and drug sensitivity profile) and MRD observed at two time points during the induction phase. Specifically, we model the observed MRD values via an auto-regressive model, accounting for left-censoring of the data and for the fact that some patients are already in remission after the first stage of induction therapy. Patient characteristics are included in the model via linear regression terms. In particular, patient-specific drug sensitivity based on ex-vivo assays of patient samples is exploited to identify groups of subjects with similar profiles. We include this information as a covariate in the model for MRD. We adopt horseshoe priors for the regression coefficients to perform variable selection to identify important covariates. We fit the proposed approach to data from three prospective paediatric ALL clinical trials carried out at the St. Jude Children’s Research Hospital. Our results highlight that drug sensitivity profiles and leukemic subtypes play an important role in predicting the response to induction therapy as measured by serial MRD measures.
Suggested Citation
Andrea Cremaschi & Wenjian Yang & Maria Iorio & William E. Evans & Jun J. Yang & Gary L. Rosner, 2025.
"Bayesian Modelling of Response to Therapy and Drug-Sensitivity in Acute Lymphoblastic Leukemia,"
Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 17(2), pages 479-500, July.
Handle:
RePEc:spr:stabio:v:17:y:2025:i:2:d:10.1007_s12561-024-09437-6
DOI: 10.1007/s12561-024-09437-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:17:y:2025:i:2:d:10.1007_s12561-024-09437-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.