IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v6y2025i3d10.1007_s43069-025-00526-w.html
   My bibliography  Save this article

Specifications for the Phytotechnical Arrangement of the Surrounding Renewable Energy Sources (RES) Environment

Author

Listed:
  • Ioannis Mitrousis

    (Democritus University of Thrace)

  • Evripidis Farmakis

    (University of Derby)

  • Konstantinos Farmakis

    (University of Derby)

  • Vasileios K. Drosos

    (Democritus University of Thrace)

Abstract

On a theoretical and practical level, the benefits and environmental impacts resulting from the use of renewable and non-renewable energy sources have been mostly accepted, understood, and calculated. In addition, infrastructure construction studies have been conducted, studied, and implemented for the utilization of most energy sources. The cognitive processes for processing information about processable energy sources are not directly involved with renewable or non-renewable energy sources but refer to each of the energy sources that make them up separately. The aim of the present paper is to carefully select the best or most suitable landscaping design, phytotechnical planning, phytotechnical material, and phytotechnical method for the arrangement of renewable energy sources (RES) environment. The methodology that will be used will be as follows: Collection of findings from data sources and data collection such as literature review. Consideration of alternative solutions for findings. State whether the hypothesis or theory is supported or not supported and/or can answer the research questions. Consideration of the generalizability of the findings. There are specific factors for a phytotechnical method in photovoltaic energy power generating stations that need to be considered and analyzed in the present paper. Such as planting surfaces that are safe for planting, planting species to be used and related to the soil morphology or physiology, plants’ height, preparatory interventions to create suitable conditions at planting sites, and growing methods and maintenance of the planting. These factors are defined according to the classification of photovoltaic station work (A1, A2, B, exempt from environmental licensing). The results include the selection of the necessary plant species according to the principles of phyto-technical arrangement and the necessary specifications.

Suggested Citation

  • Ioannis Mitrousis & Evripidis Farmakis & Konstantinos Farmakis & Vasileios K. Drosos, 2025. "Specifications for the Phytotechnical Arrangement of the Surrounding Renewable Energy Sources (RES) Environment," SN Operations Research Forum, Springer, vol. 6(3), pages 1-21, September.
  • Handle: RePEc:spr:snopef:v:6:y:2025:i:3:d:10.1007_s43069-025-00526-w
    DOI: 10.1007/s43069-025-00526-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-025-00526-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-025-00526-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Maria Milousi & Manolis Souliotis & George Arampatzis & Spiros Papaefthimiou, 2019. "Evaluating the Environmental Performance of Solar Energy Systems Through a Combined Life Cycle Assessment and Cost Analysis," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    2. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    3. Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
    4. Vidhyalakshmi Chandrasekaran & Jolanta Dvarioniene & Ausrine Vitkute & Giedrius Gecevicius, 2021. "Environmental Impact Assessment of Renovated Multi-Apartment Building Using LCA Approach: Case Study from Lithuania," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    5. Jacek Kasperski & Anna Bać & Oluwafunmilola Oladipo, 2023. "A Simulation of a Sustainable Plus-Energy House in Poland Equipped with a Photovoltaic Powered Seasonal Thermal Storage System," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    6. Christian Gelleri, 2022. "Creating Monetary Collaborative Spaces for Social and Ecological Transformation," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    7. Mariarosa Argentiero & Pasquale Marcello Falcone, 2020. "The Role of Earth Observation Satellites in Maximizing Renewable Energy Production: Case Studies Analysis for Renewable Power Plants," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    8. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    9. Alberto Cerezo-Narváez & María-José Bastante-Ceca & José-María Piñero-Vilela, 2021. "Economic and Environmental Assessment on Implementing Solar Renewable Energy Systems in Spanish Residential Homes," Energies, MDPI, vol. 14(14), pages 1-39, July.
    10. Khin Thu Thu Thein & Department of Applied Economics, Yangon University of Economics, Myanmar, 2023. "Solar Energy Farming for Sustainable Agriculture and Rural Development: Myanmar Dry Zone," International Journal of Science and Business, IJSAB International, vol. 25(1), pages 188-201.
    11. Agnieszka Jachura & Robert Sekret, 2021. "Life Cycle Assessment of the Use of Phase Change Material in an Evacuated Solar Tube Collector," Energies, MDPI, vol. 14(14), pages 1-18, July.
    12. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Tariq, Rasikh & Xamán, J. & Bassam, A. & Ricalde, Luis J. & Soberanis, M.A. Escalante, 2020. "Multidimensional assessment of a photovoltaic air collector integrated phase changing material considering Mexican climatic conditions," Energy, Elsevier, vol. 209(C).
    14. Rosangela Rodrigues Dias & Mariany Costa Deprá & Cristiano Ragagnin de Menezes & Leila Queiroz Zepka & Eduardo Jacob-Lopes, 2023. "The High-Value Product, Bio-Waste, and Eco-Friendly Energy as the Tripod of the Microalgae Biorefinery: Connecting the Dots," Sustainability, MDPI, vol. 15(15), pages 1-15, July.
    15. Jaroslav Košičan & Miguel Ángel Pardo Picazo & Silvia Vilčeková & Danica Košičanová, 2021. "Life Cycle Assessment and Economic Energy Efficiency of a Solar Thermal Installation in a Family House," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    16. Rukayya Ibrahim Muazu & Siddharth Gadkari & Jhuma Sadhukhan, 2022. "Integrated Life Cycle Assessment Modelling of Densified Fuel Production from Various Biomass Species," Energies, MDPI, vol. 15(11), pages 1-11, May.
    17. Violeta Motuzienė & Kęstutis Čiuprinskas & Artur Rogoža & Vilūnė Lapinskienė, 2022. "A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies," Energies, MDPI, vol. 15(22), pages 1-26, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:6:y:2025:i:3:d:10.1007_s43069-025-00526-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.