IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v6y2025i1d10.1007_s43069-024-00407-8.html
   My bibliography  Save this article

Multi-hazard Risk Unveiled: Pioneering Techniques for Comprehensive Risk Analysis and Mitigation

Author

Listed:
  • Payal Mahato

    (Shoolini University)

  • Supriya Srivastava

    (Shoolini University)

  • Swati Jogi

    (Shoolini University)

  • Sadanand Pandey

    (Shoolini University
    Yeungnam University)

Abstract

This study presents a systematic literature review of techniques and methods for assessing and reducing multi-hazards, with a focus on developing nations. The primary aim is to identify the most commonly used multi-hazard assessment approaches, evaluate their effectiveness, and highlight their significance for sustainability and disaster risk reduction. Addressing gaps in the literature, the study emphasizes underexplored dimensions of multi-hazard assessments in vulnerable regions. Using the PRISMA framework, 62 articles from the Scopus database (2013–2022) were reviewed based on predefined inclusion and exclusion criteria. Analytical methods include descriptive and citation analysis, keyword co-occurrence analysis via VOSviewer, and bibliometric tools, while SPSS 27 and ArcGIS 10.4 software were utilized for graphical and spatial analysis. The review identifies the Analytic Hierarchy Process (AHP), Multi-Criteria Decision-Making (MCDM), and weighted methods as prevalent techniques, particularly for their integration with geospatial technologies to assign variable weights in risk evaluation. Quantitative methods dominated the studies (40 articles), followed by mixed-method approaches, with only five articles applying qualitative methods exclusively. Research trends reveal a growing focus on multi-hazards from 2013 to 2022, particularly in developed countries such as the UK (20%), China (14%), Italy (12%), and the USA (10%), while developing nations like India, Colombia, Switzerland, Portugal, and Nepal contributed less (4% each). Common hazards studied include earthquakes and floods, reflecting their significant impact on global economies and societies. Key vulnerabilities analyzed were physical and socio-economic, though systemic and environmental dimensions remain underexplored. Frequent keywords such as “multi-hazard” and “risk assessment” underscore the global focus on integrated risk management. This review offers valuable insights for policymakers, stakeholders, and organizations to enhance hazard assessment and risk reduction strategies. It emphasizes the importance of geospatial technologies and holistic planning in addressing vulnerabilities and contributes novel insights by identifying underutilized systemic and environmental factors in multi-hazard risk assessments.

Suggested Citation

  • Payal Mahato & Supriya Srivastava & Swati Jogi & Sadanand Pandey, 2025. "Multi-hazard Risk Unveiled: Pioneering Techniques for Comprehensive Risk Analysis and Mitigation," SN Operations Research Forum, Springer, vol. 6(1), pages 1-26, March.
  • Handle: RePEc:spr:snopef:v:6:y:2025:i:1:d:10.1007_s43069-024-00407-8
    DOI: 10.1007/s43069-024-00407-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-024-00407-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-024-00407-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. M. Budimir & P. Atkinson & H. Lewis, 2014. "Earthquake-and-landslide events are associated with more fatalities than earthquakes alone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 895-914, June.
    2. Martha Carreño & Omar Cardona & Alex Barbat, 2007. "A disaster risk management performance index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 1-20, April.
    3. Arnaud Mignan & Stefan Wiemer & Domenico Giardini, 2014. "The quantification of low-probability–high-consequences events: part I. A generic multi-risk approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1999-2022, September.
    4. Baoyin Liu & Yim Ling Siu & Gordon Mitchell & Wei Xu, 2016. "The danger of mapping risk from multiple natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 139-153, May.
    5. Nicolás C Bronfman & Pamela C Cisternas & Paula B Repetto & Javiera V Castañeda, 2019. "Natural disaster preparedness in a multi-hazard environment: Characterizing the sociodemographic profile of those better (worse) prepared," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-18, April.
    6. Shao Sun & Qiang Zhang & Yuanxin Xu & Ruyue Yuan, 2021. "Integrated Assessments of Meteorological Hazards across the Qinghai-Tibet Plateau of China," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    7. Aysha Fleming & Frank Vanclay & Claire Hiller & Stephen Wilson, 2014. "Challenging dominant discourses of climate change," Climatic Change, Springer, vol. 127(3), pages 407-418, December.
    8. Mabel Marulanda & Martha Carreño & Omar Cardona & Mario Ordaz & Alex Barbat, 2013. "Probabilistic earthquake risk assessment using CAPRA: application to the city of Barcelona, Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 59-84, October.
    9. Gustavo Barrantes, 2018. "Multi-hazard model for developing countries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1081-1095, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Marwan Al Heib & Christian Franck & Hippolyte Djizanne & Marie Degas, 2023. "Post-Mining Multi-Hazard Assessment for Sustainable Development," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    2. Xiaoyi Shao & Chong Xu & Siyuan Ma, 2022. "Preliminary Analysis of Coseismic Landslides Induced by the 1 June 2022 Ms 6.1 Lushan Earthquake, China," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    3. Saud Alshehri & Yacine Rezgui & Haijiang Li, 2015. "Delphi-based consensus study into a framework of community resilience to disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2221-2245, February.
    4. Olve Krange & Bjørn P. Kaltenborn & Martin Hultman, 2021. "“Don’t confuse me with facts”—how right wing populism affects trust in agencies advocating anthropogenic climate change as a reality," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
    5. Riyanti Djalante & Cameron Holley & Frank Thomalla & Michelle Carnegie, 2013. "Pathways for adaptive and integrated disaster resilience," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2105-2135, December.
    6. F. Daupras & J. Antoine & S. Becerra & A. Peltier, 2015. "Analysis of the robustness of the French flood warning system: a study based on the 2009 flood of the Garonne River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 215-241, January.
    7. Mohammed Abdul-Rahman & Wale Alade & Shahnawaz Anwer, 2023. "A Composite Resilience Index (CRI) for Developing Resilience and Sustainability in University Towns," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    8. Armando Aguilar-Meléndez & Lluis G. Pujades & Alex H. Barbat & Marisol Monterrubio-Velasco & Josep Puente & Nieves Lantada, 2022. "Comparative analysis of a new assessment of the seismic risk of residential buildings of two districts of Barcelona," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1649-1691, February.
    9. Arnaud Mignan & Ziqi Wang, 2020. "Exploring the Space of Possibilities in Cascading Disasters with Catastrophe Dynamics," IJERPH, MDPI, vol. 17(19), pages 1-21, October.
    10. Viviana Maura Santos & Cláudio Henrique Santos Grecco & Ricardo José Matos Carvalho & Paulo Victor Rodrigues Carvalho, 2020. "A fuzzy model to assess the resilience of Protection and Civil Defense Organizations," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(3), pages 735-759, June.
    11. Hoang Long Nguyen & Rajendra Akerkar, 2020. "Modelling, Measuring, and Visualising Community Resilience: A Systematic Review," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
    12. Aysha Fleming & Claire Mason & Gillian Paxton, 2018. "Discourses of technology, ageing and participation," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.
    13. J. Oliver & X. S. Qin & O. Larsen & M. Meadows & M. Fielding, 2018. "Probabilistic flood risk analysis considering morphological dynamics and dike failure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 287-307, March.
    14. Shuangyan Guo & Shan Yang & Canjiao Liu, 2024. "Mining Heritage Reuse Risks: A Systematic Review," Sustainability, MDPI, vol. 16(10), pages 1-16, May.
    15. World Bank, 2011. "Calculating Multi-hazard City Risk," World Bank Publications - Reports 27152, The World Bank Group.
    16. Zhongkai Huang & Xingmian Deng & Chong Lei & Yixin Cheng & Chenlong Zhang & Qiangqiang Sun, 2024. "Probabilistic Seismic Risk Assessment of Metro Tunnels in Soft Soils," Sustainability, MDPI, vol. 16(18), pages 1-24, September.
    17. Evangelista, Samantha Shane & Wenceslao, Charldy & Villarosa, Rica & Maturan, Fatima & Atibing, Nadine May & Ocampo, Lanndon, 2025. "Perceived bidirectional coordination on disaster-induced health-related efforts among decision-making units," Socio-Economic Planning Sciences, Elsevier, vol. 98(C).
    18. Vahedberdi Sheikh & Aiding Kornejady & Majid Ownegh, 2019. "Application of the coupled TOPSIS–Mahalanobis distance for multi-hazard-based management of the target districts of the Golestan Province, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1335-1365, April.
    19. Liu, Chiung-Lin & Shang, Kuo-Chung & Lirn, Taih-Cherng & Lai, Kee-Hung & Lun, Y.H. Venus, 2018. "Supply chain resilience, firm performance, and management policies in the liner shipping industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 202-219.
    20. C. Velásquez & O. Cardona & M. Mora & L. Yamin & M. Carreño & A. Barbat, 2014. "Hybrid loss exceedance curve (HLEC) for disaster risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 455-479, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:6:y:2025:i:1:d:10.1007_s43069-024-00407-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.