IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16554-d999234.html
   My bibliography  Save this article

Preliminary Analysis of Coseismic Landslides Induced by the 1 June 2022 Ms 6.1 Lushan Earthquake, China

Author

Listed:
  • Xiaoyi Shao

    (National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China
    Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China, Beijing 100085, China
    Key Laboratory of Landslide Risk Early-Warning and Control, Ministry of Emergency Management of China, Chengdu 610059, China)

  • Chong Xu

    (National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China
    Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China, Beijing 100085, China
    Key Laboratory of Landslide Risk Early-Warning and Control, Ministry of Emergency Management of China, Chengdu 610059, China)

  • Siyuan Ma

    (Institute of Geology, China Earthquake Administration, Beijing 100029, China)

Abstract

At 17:00 (UTC+8) on 1 June 2022, an Ms 6.1 reverse earthquake struck Lushan County, Ya’an City, Sichuan Province. This earthquake event had a focal depth of 10 km and the epicenter was located at 30.37° N and 102.94° E. The purpose of this study is to document a comprehensive coseismic landslide inventory for this event and analyze the distribution pattern and factors controlling the landslides. After careful visual interpretations, this quake event was determined to have in total triggered about 2352 landslides in an area of 3900 km 2 , including both shallow disrupted landslides and collapses, for which the spatial distribution was statistically related to regional topography, geology, and seismicity. Notably, a vast majority of the landslides were located on the NW plate of the seismogenic fault, and were distributed in the area with a seismic intensity of VII. In addition, coseismic landslides were more likely to appear in areas with high altitude, relief, and large slope. The landslide area density (LAD) increased with an increase in the above factors and is explained by an exponential relationship, indicating that the occurrence of coseismic landslides in this area was more easily affected by topographic factors than seismic factors. Most small-scale landslides were clustered in the ridge area, which shows the seismic amplification effects of mountain slopes. Due to the impact of seismic wave propagation direction, hillslopes facing northeast-east (NE-E) were more prone to collapse than southwest-facing ones. Based on the distribution pattern of the landslides, we suggest that the seismogenic fault of this event was NW dipping. These findings indicate that it is effective to identify the dipping of seismogenic faults using the spatial distribution pattern of coseismic landslides.

Suggested Citation

  • Xiaoyi Shao & Chong Xu & Siyuan Ma, 2022. "Preliminary Analysis of Coseismic Landslides Induced by the 1 June 2022 Ms 6.1 Lushan Earthquake, China," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16554-:d:999234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Budimir & P. Atkinson & H. Lewis, 2014. "Earthquake-and-landslide events are associated with more fatalities than earthquakes alone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 895-914, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Marwan Al Heib & Christian Franck & Hippolyte Djizanne & Marie Degas, 2023. "Post-Mining Multi-Hazard Assessment for Sustainable Development," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    2. Susu Xu & Joshua Dimasaka & David J. Wald & Hae Young Noh, 2022. "Seismic multi-hazard and impact estimation via causal inference from satellite imagery," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Rohana Tair & Sheyron Eduin, 2018. "Heavy Metals In Water And Sediment From Liwagu River And Mansahaban River At Ranau Sabah," Malaysian Journal of Geosciences (MJG), Zibeline International Publishing, vol. 2(2), pages 26-32, August.
    4. M. F. Ferrario, 2019. "Landslides triggered by multiple earthquakes: insights from the 2018 Lombok (Indonesia) events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 575-592, September.
    5. Xiang-Zhou Xu & Guo-Dong Song & Jie Liu & Wei-Qin Dang & Hang Gao & Zhen-Yi Liu & Hong-Wu Zhang, 2015. "Avalanche in Tuban: a hazard with no defense," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 2181-2187, December.
    6. S. Elayaraja & S. Chandrasekaran & G. Ganapathy, 2015. "Evaluation of seismic hazard and potential of earthquake-induced landslides of the Nilgiris, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1997-2015, September.
    7. Tom R. Robinson, 2020. "Scenario ensemble modelling of possible future earthquake impacts in Bhutan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3457-3478, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16554-:d:999234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.