IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i13d10.1007_s11069-025-07396-9.html
   My bibliography  Save this article

Dynamic landslide susceptibility for extreme rainfall events using an optimized convolutional neural network approach

Author

Listed:
  • Said A. Mejia-Manrique

    (The City College of New York)

  • Carlos E. Ramos-Scharrón

    (The University of Texas at Austin)

  • K. Stephen Hughes

    (University of Puerto Rico)

  • Jorge E. Gonzalez-Cruz

    (University at Albany)

  • Reza M. Khanbilvardi

    (The City College of New York)

Abstract

The development of machine learning (ML) and deep learning (DL) models for landslide susceptibility remains challenging in part due to the limited availability of comprehensive slope failure records, shortage of real-time soil moisture, and saturation measurements, uncertainties in precipitation data accuracy, and reliable information on landscape characteristics. In the aftermath of the impact of Hurricane Maria on Puerto Rico in 2017, a comprehensive landslide database was compiled, cataloging more than 70,000 slope failures along with high-resolution landscape information, remotely sensed real-time soil moisture and soil saturation data, and accurate precipitation forecasts. These elements make Puerto Rico an ideal location to advance DL approaches for landslide susceptibility. This study introduces an optimized U-shaped convolutional neural network (CNN) with encoder-decoder architecture, incorporating attention gates, and fully connected layers to generate high-resolution landslide susceptibility maps. The parameters and shape of the model architecture, including the number of convolutional filters, kernel size, depth, activation functions, dropout layers among other parameters, were fine-tuned using a Bayesian Optimization method. The findings indicate that the proposed CNN outperforms traditional ML models, including Random Forest, Support Vector Machine, and Logistic Regression, as well as prior CNN architectures, achieving an accuracy of 0.848 and an Area Under Receiver Characteristic Curve (AUC) of 0.922. The resulting proposed trained model can be utilized to predict landslide susceptibility by using forecasted precipitation, real-time soil moisture, soil saturation, and landscape data for future extreme weather events.

Suggested Citation

  • Said A. Mejia-Manrique & Carlos E. Ramos-Scharrón & K. Stephen Hughes & Jorge E. Gonzalez-Cruz & Reza M. Khanbilvardi, 2025. "Dynamic landslide susceptibility for extreme rainfall events using an optimized convolutional neural network approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(13), pages 15383-15411, July.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:13:d:10.1007_s11069-025-07396-9
    DOI: 10.1007/s11069-025-07396-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07396-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07396-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Binh Thai Pham & Ataollah Shirzadi & Himan Shahabi & Ebrahim Omidvar & Sushant K. Singh & Mehebub Sahana & Dawood Talebpour Asl & Baharin Bin Ahmad & Nguyen Kim Quoc & Saro Lee, 2019. "Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms," Sustainability, MDPI, vol. 11(16), pages 1-25, August.
    2. M. Budimir & P. Atkinson & H. Lewis, 2014. "Earthquake-and-landslide events are associated with more fatalities than earthquakes alone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 895-914, June.
    3. Bilal Aslam & Adeel Zafar & Umer Khalil, 2023. "Comparative analysis of multiple conventional neural networks for landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 673-707, January.
    4. Martin Kuradusenge & Santhi Kumaran & Marco Zennaro, 2020. "Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda," IJERPH, MDPI, vol. 17(11), pages 1-20, June.
    5. Oscar Guzman & Haiyan Jiang, 2021. "Global increase in tropical cyclone rain rate," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeed Alqadhi & Javed Mallick & Meshel Alkahtani & Intikhab Ahmad & Dhafer Alqahtani & Hoang Thi Hang, 2024. "Developing a hybrid deep learning model with explainable artificial intelligence (XAI) for enhanced landslide susceptibility modeling and management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3719-3747, March.
    2. Lianjie Qin & Laiyin Zhu & Baoyin Liu & Zixuan Li & Yugang Tian & Gordon Mitchell & Shifei Shen & Wei Xu & Jianguo Chen, 2024. "Global expansion of tropical cyclone precipitation footprint," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Xiaoyi Shao & Chong Xu & Siyuan Ma, 2022. "Preliminary Analysis of Coseismic Landslides Induced by the 1 June 2022 Ms 6.1 Lushan Earthquake, China," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    4. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    5. Joseph L.-H. Tsui & Rosario Evans Pena & Monika Moir & Rhys P. D. Inward & Eduan Wilkinson & James Emmanuel San & Jenicca Poongavanan & Sumali Bajaj & Bernardo Gutierrez & Abhishek Dasgupta & Tulio Ol, 2024. "Impacts of climate change-related human migration on infectious diseases," Nature Climate Change, Nature, vol. 14(8), pages 793-802, August.
    6. Kwangmin Jung & Jonghun Kam & Seungjoon Lee, 2024. "Tropical cyclone risk assessment reflecting the climate change trend: the case of South Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(6), pages 5841-5867, April.
    7. Shuangyan Guo & Shan Yang & Canjiao Liu, 2024. "Mining Heritage Reuse Risks: A Systematic Review," Sustainability, MDPI, vol. 16(10), pages 1-16, May.
    8. Wentao Yang & Min Deng & Jianbo Tang & Liang Luo, 2023. "Geographically weighted regression with the integration of machine learning for spatial prediction," Journal of Geographical Systems, Springer, vol. 25(2), pages 213-236, April.
    9. Deborah Simon Mwakapesa & Yimin Mao & Xiaoji Lan & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Mapping Using DIvisive ANAlysis (DIANA) and RObust Clustering Using linKs (ROCK) Algorithms, and Comparison of Their Performance," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    10. Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.
    11. Xiang-Zhou Xu & Guo-Dong Song & Jie Liu & Wei-Qin Dang & Hang Gao & Zhen-Yi Liu & Hong-Wu Zhang, 2015. "Avalanche in Tuban: a hazard with no defense," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 2181-2187, December.
    12. Shinyoung Kwag & Daegi Hahm & Minkyu Kim & Seunghyun Eem, 2020. "Development of a Probabilistic Seismic Performance Assessment Model of Slope Using Machine Learning Methods," Sustainability, MDPI, vol. 12(8), pages 1-22, April.
    13. Mohammad Mehrabi, 2022. "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 901-937, March.
    14. Yuxin Guo & Zhanya Xu & Shuang Zhu & Xiangang Luo & Yinli Xiao, 2023. "Using distributed root soil moisture data to enhance the performance of rainfall thresholds for landslide warning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1167-1192, January.
    15. Satya Prakash & M. Mohapatra, 2023. "Mean rainfall characteristics of tropical cyclones over the North Indian Ocean using a merged satellite-gauge daily rainfall dataset," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 1437-1459, December.
    16. Motrza Ghobadi & Masumeh Ahmadipari, 2024. "Enhancing Flood Susceptibility Modeling: a Hybrid Deep Neural Network with Statistical Learning Algorithms for Predicting Flood Prone Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(8), pages 2687-2710, June.
    17. Satya Prakash & S. C. Bhan, 2023. "Assessment of INSAT-3D-derived high-resolution real-time precipitation products for North Indian Ocean cyclones," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 993-1009, January.
    18. Aadil Manzoor Nanda & Fayaz A. Lone & Pervez Ahmed, 2024. "Prediction of rainfall-induced landslide using machine learning models along highway Bandipora to Gurez road, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6169-6197, May.
    19. Peyman Yariyan & Saeid Janizadeh & Tran Phong & Huu Duy Nguyen & Romulus Costache & Hiep Le & Binh Thai Pham & Biswajeet Pradhan & John P. Tiefenbacher, 2020. "Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3037-3053, July.
    20. Tom R. Robinson, 2020. "Scenario ensemble modelling of possible future earthquake impacts in Bhutan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3457-3478, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:13:d:10.1007_s11069-025-07396-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.