IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i7d10.1007_s11069-024-06405-7.html
   My bibliography  Save this article

Prediction of rainfall-induced landslide using machine learning models along highway Bandipora to Gurez road, India

Author

Listed:
  • Aadil Manzoor Nanda

    (Indian Council of Social Science Research)

  • Fayaz A. Lone

    (University of Kashmir)

  • Pervez Ahmed

    (University of Kashmir)

Abstract

The present study attempts to explore the efficacy of machine learning models in landslide predictions caused by rainfall events along highway from Bandipora to Gurez, J&K, India. Random forest (RF) and logistic regression (LR) models were employed to find the optimal parameters for targeted feature, i.e., landslide prediction. These models were evaluated for accuracy using the receiver operating characteristics, area under the curve (ROC-AUC) and false-negative rate (FNR). The results reveal a positive correlation between antecedent rainfall and landslide occurrence rather than between single-day landslide and rainfall events. Comparing the two models, LR model’s performance is well within the acceptable limits of FNR and, therefore, could be preferred for landslide prediction over RF. LR model’s incorrect prediction rate is 8.48% without including antecedent precipitation data and 5.84% including antecedent precipitation data. Our study calls for wider use of machinery learning models for developing early warning systems of landslides.

Suggested Citation

  • Aadil Manzoor Nanda & Fayaz A. Lone & Pervez Ahmed, 2024. "Prediction of rainfall-induced landslide using machine learning models along highway Bandipora to Gurez road, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6169-6197, May.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:7:d:10.1007_s11069-024-06405-7
    DOI: 10.1007/s11069-024-06405-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06405-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06405-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cezar Morar & Tin Lukić & Biljana Basarin & Aleksandar Valjarević & Miroslav Vujičić & Lyudmila Niemets & Ievgeniia Telebienieva & Lajos Boros & Gyula Nagy, 2021. "Shaping Sustainable Urban Environments by Addressing the Hydro-Meteorological Factors in Landslide Occurrence: Ciuperca Hill (Oradea, Romania)," IJERPH, MDPI, vol. 18(9), pages 1-20, May.
    2. Hamid Pourghasemi & Biswajeet Pradhan & Candan Gokceoglu, 2012. "Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 965-996, September.
    3. Jean Baptiste Nsengiyumva & Geping Luo & Lamek Nahayo & Xiaotao Huang & Peng Cai, 2018. "Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda," IJERPH, MDPI, vol. 15(2), pages 1-23, January.
    4. Sangseom Jeong & Kwangwoo Lee & Junghwan Kim & Yongmin Kim, 2017. "Analysis of Rainfall-Induced Landslide on Unsaturated Soil Slopes," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    5. Martin Kuradusenge & Santhi Kumaran & Marco Zennaro, 2020. "Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda," IJERPH, MDPI, vol. 17(11), pages 1-20, June.
    6. Faraz S. Tehrani & Michele Calvello & Zhongqiang Liu & Limin Zhang & Suzanne Lacasse, 2022. "Machine learning and landslide studies: recent advances and applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1197-1245, November.
    7. Yashar Alimohammadlou & Burak F. Tanyu & Aiyoub Abbaspour & Paul L. Delamater, 2021. "Automated landslide detection model to delineate the extent of existing landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1639-1656, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Kuradusenge & Santhi Kumaran & Marco Zennaro, 2020. "Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda," IJERPH, MDPI, vol. 17(11), pages 1-20, June.
    2. Batmyagmar Dashbold & L. Sebastian Bryson & Matthew M. Crawford, 2023. "Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 235-265, March.
    3. Xiang Zhang & Minghui Zhang & Xin Liu & Berhanu Keno Terfa & Won-Ho Nam & Xihui Gu & Xu Zhang & Chao Wang & Jian Yang & Peng Wang & Chenghong Hu & Wenkui Wu & Nengcheng Chen, 2024. "Review on the progress and future prospects of geological disasters prediction in the era of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11485-11525, October.
    4. Txomin Bornaetxea & Juan Remondo & Jaime Bonachea & Pablo Valenzuela, 2023. "Exploring available landslide inventories for susceptibility analysis in Gipuzkoa province (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2513-2542, September.
    5. Gökhan Demir & Mustafa Aytekin & Aykut Akgün & Sabriye İkizler & Orhan Tatar, 2013. "A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1481-1506, February.
    6. Rui Yuan & Jing Chen, 2022. "A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1393-1426, November.
    7. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    8. Luca Schilirò & Gian Marco Marmoni & Matteo Fiorucci & Massimo Pecci & Gabriele Scarascia Mugnozza, 2023. "Preliminary insights from hydrological field monitoring for the evaluation of landslide triggering conditions over large areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1401-1426, September.
    9. Sadhan Malik & Subodh Chandra Pal & Biswajit Das & Rabin Chakrabortty, 2020. "Assessment of vegetation status of Sali River basin, a tributary of Damodar River in Bankura District, West Bengal, using satellite data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5651-5685, August.
    10. Santos Daniel Chicas & Heng Li & Nobuya Mizoue & Tetsuji Ota & Yan Du & Márk Somogyvári, 2024. "Landslide susceptibility mapping core-base factors and models’ performance variability: a systematic review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 12573-12593, November.
    11. Kibeom Kwon & Minkyu Kang & Dongku Kim & Hangseok Choi, 2023. "Prioritization of Hazardous Zones Using an Advanced Risk Management Model Combining the Analytic Hierarchy Process and Fuzzy Set Theory," Sustainability, MDPI, vol. 15(15), pages 1-15, August.
    12. Nzotcha, Urbain & Kenfack, Joseph & Blanche Manjia, Marceline, 2019. "Integrated multi-criteria decision making methodology for pumped hydro-energy storage plant site selection from a sustainable development perspective with an application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 930-947.
    13. Majid Mohammady & Hamid Reza Pourghasemi & Mojtaba Amiri, 2019. "Assessment of land subsidence susceptibility in Semnan plain (Iran): a comparison of support vector machine and weights of evidence data mining algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 951-971, November.
    14. Viet-Tien Nguyen & Trong Hien Tran & Ngoc Anh Ha & Van Liem Ngo & Al-Ansari Nadhir & Van Phong Tran & Huu Duy Nguyen & Malek M. A. & Ata Amini & Indra Prakash & Lanh Si Ho & Binh Thai Pham, 2019. "GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
    15. Neshat, Aminreza & Pradhan, Biswajeet & Dadras, Mohsen, 2014. "Groundwater vulnerability assessment using an improved DRASTIC method in GIS," Resources, Conservation & Recycling, Elsevier, vol. 86(C), pages 74-86.
    16. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    17. Wenqun Xiu & Shuying Wang & Wenguang Qi & Xue Li & Chisheng Wang, 2021. "Disaster Chain Analysis of Landfill Landslide: Scenario Simulation and Chain-Cutting Modeling," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    18. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    19. Rajesh Khatakho & Dipendra Gautam & Komal Raj Aryal & Vishnu Prasad Pandey & Rajesh Rupakhety & Suraj Lamichhane & Yi-Chung Liu & Khameis Abdouli & Rocky Talchabhadel & Bhesh Raj Thapa & Rabindra Adhi, 2021. "Multi-Hazard Risk Assessment of Kathmandu Valley, Nepal," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    20. Aihua Wei & Duo Li & Yahong Zhou & Qinghai Deng & Liangdong Yan, 2021. "A novel combination approach for karst collapse susceptibility assessment using the analytic hierarchy process, catastrophe, and entropy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 405-430, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:7:d:10.1007_s11069-024-06405-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.