IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3269-d346735.html
   My bibliography  Save this article

Development of a Probabilistic Seismic Performance Assessment Model of Slope Using Machine Learning Methods

Author

Listed:
  • Shinyoung Kwag

    (Department of Civil and Environmental Engineering, Hanbat National University, Daejeon 34158, Korea)

  • Daegi Hahm

    (Mechanical and Structural Safety Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea)

  • Minkyu Kim

    (Mechanical and Structural Safety Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea)

  • Seunghyun Eem

    (School of Convergence & Fusion System Engineering, Kyungpook National University, Gyeongsanbuk-do 37224, Korea)

Abstract

The objective of this study is to propose a model that can predict the seismic performance of slope relatively accurately and efficiently by using machine learning methods. Probabilistic seismic fragility analyses of the slope had been carried out in other studies, and a closed-form equation for slope seismic performance was proposed through a multiple linear regression analysis. However, the traditional statistical linear regression analysis showed a limit that could not accurately represent such nonlinear slope seismic performances. To overcome this limit, in this study, we used three machine learning methods (i.e., support vector machine (SVM), artificial neural network (ANN), Gaussian process regression (GPR)) to generate prediction models of the slope seismic performance. The models obtained through the machine learning methods basically showed better performance compared to the models of the traditional statistical methods. The results of the SVM showed no significant performance difference compared with the results of the nonlinear regression analysis method, but the results based on the ANN and GPR showed a remarkable improvement in the prediction performance over the other models. Furthermore, this study confirmed that the GPR-based model predicted relatively accurate seismic performance values compared with the model through the ANN.

Suggested Citation

  • Shinyoung Kwag & Daegi Hahm & Minkyu Kim & Seunghyun Eem, 2020. "Development of a Probabilistic Seismic Performance Assessment Model of Slope Using Machine Learning Methods," Sustainability, MDPI, vol. 12(8), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3269-:d:346735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Binh Thai Pham & Ataollah Shirzadi & Himan Shahabi & Ebrahim Omidvar & Sushant K. Singh & Mehebub Sahana & Dawood Talebpour Asl & Baharin Bin Ahmad & Nguyen Kim Quoc & Saro Lee, 2019. "Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms," Sustainability, MDPI, vol. 11(16), pages 1-25, August.
    2. Sambit Prasanajit Naik & Ohsang Gwon & Kiwoong Park & Young-Seog Kim, 2020. "Land Damage Mapping and Liquefaction Potential Analysis of Soils from the Epicentral Region of 2017 Pohang Mw 5.4 Earthquake, South Korea," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    3. Jin Li, 2017. "Assessing the accuracy of predictive models for numerical data: Not r nor r2, why not? Then what?," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-16, August.
    4. Heon-Joon Park & Jeong-Gon Ha & Se-Hyun Kim & Sang-Sun Jo, 2019. "Seismic Performance of Ancient Masonry Structures in Korea Rediscovered in 2016 M 5.8 Gyeongju Earthquake," Sustainability, MDPI, vol. 11(6), pages 1-13, March.
    5. Dong Van Dao & Hojjat Adeli & Hai-Bang Ly & Lu Minh Le & Vuong Minh Le & Tien-Thinh Le & Binh Thai Pham, 2020. "A Sensitivity and Robustness Analysis of GPR and ANN for High-Performance Concrete Compressive Strength Prediction Using a Monte Carlo Simulation," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gongfa Chen & Wei Deng & Mansheng Lin & Jianbin Lv, 2023. "Slope stability analysis based on convolutional neural network and digital twin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1427-1443, September.
    2. Jaime de-Miguel-Rodríguez & Antonio Morales-Esteban & María-Victoria Requena-García-Cruz & Beatriz Zapico-Blanco & María-Luisa Segovia-Verjel & Emilio Romero-Sánchez & João Manuel Carvalho-Estêvão, 2022. "Fast Seismic Assessment of Built Urban Areas with the Accuracy of Mechanical Methods Using a Feedforward Neural Network," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    3. Hanxu Zhou & Ailan Che & Xianghua Shuai & Yanbo Cao, 2024. "Seismic vulnerability assessment model of civil structure using machine learning algorithms: a case study of the 2014 Ms6.5 Ludian earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6481-6508, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.
    2. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    3. Rufino, Marta M. & Albouy, Camille & Brind'Amour, Anik, 2021. "Which spatial interpolators I should use? A case study applying to marine species," Ecological Modelling, Elsevier, vol. 449(C).
    4. Hai-Bang Ly & Tien-Thinh Le & Huong-Lan Thi Vu & Van Quan Tran & Lu Minh Le & Binh Thai Pham, 2020. "Computational Hybrid Machine Learning Based Prediction of Shear Capacity for Steel Fiber Reinforced Concrete Beams," Sustainability, MDPI, vol. 12(7), pages 1-34, March.
    5. Jyh-Woei Lin, 2022. "Generalized two-dimensional principal component analysis and two artificial neural network models to detect traveling ionospheric disturbances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1245-1270, March.
    6. Bieke Gepts & Erik Nuyts & Griet Verbeeck, 2025. "Explorative Short-Term Predictive Models for the Belgian (Energy) Renovation Market Incorporating Macroeconomic and Sector-Specific Variables," Sustainability, MDPI, vol. 17(3), pages 1-23, February.
    7. Said A. Mejia-Manrique & Carlos E. Ramos-Scharrón & K. Stephen Hughes & Jorge E. Gonzalez-Cruz & Reza M. Khanbilvardi, 2025. "Dynamic landslide susceptibility for extreme rainfall events using an optimized convolutional neural network approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(13), pages 15383-15411, July.
    8. Wentao Yang & Min Deng & Jianbo Tang & Liang Luo, 2023. "Geographically weighted regression with the integration of machine learning for spatial prediction," Journal of Geographical Systems, Springer, vol. 25(2), pages 213-236, April.
    9. Ritabrata Roy & Mrinmoy Majumder, 2022. "Assessment of water quality trends in Deepor Beel, Assam, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14327-14347, December.
    10. Mohammad Mehrabi, 2022. "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 901-937, March.
    11. Peyman Yariyan & Saeid Janizadeh & Tran Phong & Huu Duy Nguyen & Romulus Costache & Hiep Le & Binh Thai Pham & Biswajeet Pradhan & John P. Tiefenbacher, 2020. "Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3037-3053, July.
    12. Nithin Isaac & Akshay K. Saha, 2024. "Forecasting Hydrogen Vehicle Refuelling for Sustainable Transportation: A Light Gradient-Boosting Machine Model," Sustainability, MDPI, vol. 16(10), pages 1-24, May.
    13. Fatiha Debiche & Mohammed Amin Benbouras & Alexandru-Ionut Petrisor & Lyes Mohamed Baba Ali & Abdelghani Leghouchi, 2024. "Advancing Landslide Susceptibility Mapping in the Medea Region Using a Hybrid Metaheuristic ANFIS Approach," Land, MDPI, vol. 13(6), pages 1-29, June.
    14. Daniel S. Maynard & Lalasia Bialic-Murphy & Constantin M. Zohner & Colin Averill & Johan Hoogen & Haozhi Ma & Lidong Mo & Gabriel Reuben Smith & Alicia T. R. Acosta & Isabelle Aubin & Erika Berenguer , 2022. "Global relationships in tree functional traits," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Rachida Senouci & Nasr-Eddine Taibi & Ana Cláudia Teodoro & Lia Duarte & Hamidi Mansour & Rabia Yahia Meddah, 2021. "GIS-Based Expert Knowledge for Landslide Susceptibility Mapping (LSM): Case of Mostaganem Coast District, West of Algeria," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    16. Indrajit Chowdhuri & Subodh Chandra Pal & Rabin Chakrabortty & Sadhan Malik & Biswajit Das & Paramita Roy, 2021. "Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 697-722, May.
    17. Meryem El Bouzekraoui & Abdenbi Elaloui & Samira Krimissa & Kamal Abdelrahman & Ali Y. Kahal & Sonia Hajji & Maryem Ismaili & Biraj Kanti Mondal & Mustapha Namous, 2024. "Performance Assessment of Individual and Ensemble Learning Models for Gully Erosion Susceptibility Mapping in a Mountainous and Semi-Arid Region," Land, MDPI, vol. 13(12), pages 1-30, December.
    18. Xiaojie Yang & Zhenli Hao & Keyuan Liu & Zhigang Tao & Guangcheng Shi, 2023. "An Improved Unascertained Measure-Set Pair Analysis Model Based on Fuzzy AHP and Entropy for Landslide Susceptibility Zonation Mapping," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    19. Phong Tung Nguyen & Duong Hai Ha & Huu Duy Nguyen & Tran Van Phong & Phan Trong Trinh & Nadhir Al-Ansari & Hiep Van Le & Binh Thai Pham & Lanh Si Ho & Indra Prakash, 2020. "Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling," Sustainability, MDPI, vol. 12(7), pages 1-28, March.
    20. Binh Thai Pham & Chongchong Qi & Lanh Si Ho & Trung Nguyen-Thoi & Nadhir Al-Ansari & Manh Duc Nguyen & Huu Duy Nguyen & Hai-Bang Ly & Hiep Van Le & Indra Prakash, 2020. "A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil," Sustainability, MDPI, vol. 12(6), pages 1-16, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3269-:d:346735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.