IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v27y2024i1d10.1007_s11203-023-09300-3.html
   My bibliography  Save this article

Asymptotically efficient estimation of Ergodic rough fractional Ornstein-Uhlenbeck process under continuous observations

Author

Listed:
  • Kohei Chiba

    (Osaka University)

  • Tetsuya Takabatake

    (Hiroshima University)

Abstract

We consider the problem of asymptotically efficient estimation of drift parameters of the ergodic fractional Ornstein-Uhlenbeck process under continuous observations when the Hurst parameter $$H

Suggested Citation

  • Kohei Chiba & Tetsuya Takabatake, 2024. "Asymptotically efficient estimation of Ergodic rough fractional Ornstein-Uhlenbeck process under continuous observations," Statistical Inference for Stochastic Processes, Springer, vol. 27(1), pages 103-122, April.
  • Handle: RePEc:spr:sistpr:v:27:y:2024:i:1:d:10.1007_s11203-023-09300-3
    DOI: 10.1007/s11203-023-09300-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-023-09300-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-023-09300-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.
    2. Alexandre Brouste & Hiroki Masuda, 2018. "Efficient estimation of stable Lévy process with symmetric jumps," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 289-307, July.
    3. Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2022. "Consistent estimation for fractional stochastic volatility model under high‐frequency asymptotics," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1086-1132, October.
    4. Nualart, David & Ouknine, Youssef, 2002. "Regularization of differential equations by fractional noise," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 103-116, November.
    5. Alexandre Brouste & Marina Kleptsyna, 2010. "Asymptotic properties of MLE for partially observed fractional diffusion system," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 1-13, April.
    6. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohu Wang & Weilin Xiao & Jun Yu & Chen Zhang, 2025. "Maximum Likelihood Estimation of Fractional Ornstein-Uhlenbeck Process with Discretely Sampled Data," Working Papers 202527, University of Macau, Faculty of Business Administration.
    2. Markus Bibinger & Jun Yu & Chen Zhang, 2025. "Modeling and Forecasting Realized Volatility with Multivariate Fractional Brownian Motion," Papers 2504.15985, arXiv.org.
    3. Florian Aichinger & Sascha Desmettre, 2025. "Pricing of geometric Asian options in the Volterra-Heston model," Review of Derivatives Research, Springer, vol. 28(1), pages 1-30, April.
    4. Zhu, Qinwen & Diao, Xundi & Wu, Chongfeng, 2023. "Volatility forecast with the regularity modifications," Finance Research Letters, Elsevier, vol. 58(PA).
    5. Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
    6. Huy N. Chau & Duy Nguyen & Thai Nguyen, 2024. "On short-time behavior of implied volatility in a market model with indexes," Papers 2402.16509, arXiv.org, revised Mar 2025.
    7. Shi, Shuping & Yu, Jun & Zhang, Chen, 2024. "On the spectral density of fractional Ornstein–Uhlenbeck processes," Journal of Econometrics, Elsevier, vol. 245(1).
    8. Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "Multivariate Rough Volatility," CEIS Research Paper 589, Tor Vergata University, CEIS, revised 20 Dec 2024.
    9. Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    10. Peter Christensen, 2024. "Roughness Signature Functions," Papers 2401.02819, arXiv.org.
    11. Liu, Yanghui & Nualart, Eulalia & Tindel, Samy, 2019. "LAN property for stochastic differential equations with additive fractional noise and continuous time observation," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2880-2902.
    12. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    13. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    14. Eduardo Abi Jaber & Donatien Hainaut & Edouard Motte, 2025. "The Volterra Stein-Stein model with stochastic interest rates," Papers 2503.01716, arXiv.org.
    15. Stefano De Marco, 2020. "On the harmonic mean representation of the implied volatility," Papers 2007.03585, arXiv.org.
    16. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    17. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Søjmark, 2024. "Functional central limit theorems for rough volatility," Finance and Stochastics, Springer, vol. 28(3), pages 615-661, July.
    18. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    19. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    20. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:27:y:2024:i:1:d:10.1007_s11203-023-09300-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.