IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v130y2025i8d10.1007_s11192-025-05394-z.html
   My bibliography  Save this article

Field identification and opportunity discovery of photovoltaics technology: deep transfer learning method

Author

Listed:
  • Ruilian Han

    (Wuhan University
    Wuhan University)

  • Lu An

    (Wuhan University
    Wuhan University
    Wuhan University)

  • Wei Zhou

    (Wuhan University)

  • Gang Li

    (Wuhan University
    Wuhan University)

Abstract

The advancement of technology relies on scientific and accurate identification of potential opportunities within the field. This study presents a novel method for discovering technology opportunities by combining multi-source data sources and utilizing the word-embedding model, the topic model, and deep transfer learning. The process involves identifying technology fields using sentence vectors that incorporate external semantic knowledge, which addresses the limitations of previous models that only consider word co-occurrence relationships. Real-time Google search data is also integrated to ensure the results are up-to-date. The proposed method was applied to photovoltaics technology and demonstrated impressive performance in enhancing topic coherence and predictive accuracy. The findings indicate that solar cell devices and materials, such as polymer materials and flexible photovoltaic devices, are the most promising technology opportunities based on multi-source data analysis.

Suggested Citation

  • Ruilian Han & Lu An & Wei Zhou & Gang Li, 2025. "Field identification and opportunity discovery of photovoltaics technology: deep transfer learning method," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(8), pages 4283-4307, August.
  • Handle: RePEc:spr:scient:v:130:y:2025:i:8:d:10.1007_s11192-025-05394-z
    DOI: 10.1007/s11192-025-05394-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-025-05394-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-025-05394-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yongho Lee & So Young Kim & Inseok Song & Yongtae Park & Juneseuk Shin, 2014. "Technology opportunity identification customized to the technological capability of SMEs through two-stage patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 227-244, July.
    2. Al-Emran, Mostafa & Griffy-Brown, Charla, 2023. "The role of technology adoption in sustainable development: Overview, opportunities, challenges, and future research agendas," Technology in Society, Elsevier, vol. 73(C).
    3. Xiaoji Wan & Fen Chen & Hailin Li & Weibin Lin, 2022. "Potentially Related Commodity Discovery Based on Link Prediction," Mathematics, MDPI, vol. 10(19), pages 1-27, October.
    4. Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
    5. Klevorick, Alvin K. & Levin, Richard C. & Nelson, Richard R. & Winter, Sidney G., 1995. "On the sources and significance of interindustry differences in technological opportunities," Research Policy, Elsevier, vol. 24(2), pages 185-205, March.
    6. Koopo Kwon & Sungchan Jun & Yong-Jae Lee & Sanghei Choi & Chulung Lee, 2022. "Logistics Technology Forecasting Framework Using Patent Analysis for Technology Roadmap," Sustainability, MDPI, vol. 14(9), pages 1-30, April.
    7. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    8. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    9. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).
    10. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    11. Xiaorui Jiang & Junjun Liu, 2023. "Extracting the evolutionary backbone of scientific domains: The semantic main path network analysis approach based on citation context analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(5), pages 546-569, May.
    12. Rico Lee-Ting Cho & John S. Liu & Mei Hsiu-Ching Ho, 2021. "The development of autonomous driving technology: perspectives from patent citation analysis," Transport Reviews, Taylor & Francis Journals, vol. 41(5), pages 685-711, September.
    13. Noh, Heeyong & Song, Young-Keun & Lee, Sungjoo, 2016. "Identifying emerging core technologies for the future: Case study of patents published by leading telecommunication organizations," Telecommunications Policy, Elsevier, vol. 40(10), pages 956-970.
    14. Cammarano, Antonello & Varriale, Vincenzo & Michelino, Francesca & Caputo, Mauro, 2023. "Employing online big data and patent statistics to examine the relationship between end product's perceived quality and components' technological features," Technology in Society, Elsevier, vol. 73(C).
    15. Song, Bomi & Suh, Yongyoon, 2019. "Identifying convergence fields and technologies for industrial safety: LDA-based network analysis," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 115-126.
    16. Antonio Andreoni & Ha-Joon Chang & Mateus Labrunie, 2021. "Natura Non Facit Saltus: Challenges and Opportunities for Digital Industrialisation Across Developing Countries," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 33(2), pages 330-370, April.
    17. Wang, Nannan & Gong, Zheng & Xu, Zhuhuizi & Liu, Zhankun & Han, Yu, 2021. "A quantitative investigation of the technological innovation in large construction companies," Technology in Society, Elsevier, vol. 65(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    2. Yong-Jae Lee, 2025. "Steering towards future sustainability: a data-driven roadmap for eco-friendly road transport research in the European context," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 30(6), pages 1-37, August.
    3. Song, Kisik & Kim, Karp Soo & Lee, Sungjoo, 2017. "Discovering new technology opportunities based on patents: Text-mining and F-term analysis," Technovation, Elsevier, vol. 60, pages 1-14.
    4. Yalcin, Haydar & Daim, Tugrul & Moughari, Mahdieh Mokhtari & Mermoud, Alain, 2024. "Supercomputers and quantum computing on the axis of cyber security," Technology in Society, Elsevier, vol. 77(C).
    5. Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).
    6. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    7. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    8. Qianqian Jin & Hongshu Chen & Ximeng Wang & Tingting Ma & Fei Xiong, 2022. "Exploring funding patterns with word embedding-enhanced organization–topic networks: a case study on big data," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5415-5440, September.
    9. Lee, MyoungHoon & Kim, Suhyeon & Kim, Hangyeol & Lee, Junghye, 2022. "Technology Opportunity Discovery using Deep Learning-based Text Mining and a Knowledge Graph," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    10. Noh, Heeyong & Kim, Kyuwoong & Song, Young-Keun & Lee, Sungjoo, 2021. "Opportunity-driven technology roadmapping: The case of 5G mobile services," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    11. Igors Skute & Kasia Zalewska-Kurek & Isabella Hatak & Petra Weerd-Nederhof, 2019. "Mapping the field: a bibliometric analysis of the literature on university–industry collaborations," The Journal of Technology Transfer, Springer, vol. 44(3), pages 916-947, June.
    12. Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
    13. Park, Youngjin & Yoon, Janghyeok, 2017. "Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 170-183.
    14. Choi, Jaewoong & Jeong, Byeongki & Yoon, Janghyeok, 2019. "Technology opportunity discovery under the dynamic change of focus technology fields: Application of sequential pattern mining to patent classifications," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    15. Yun, Siyeong & Song, Kisik & Kim, Chulhyun & Lee, Sungjoo, 2021. "From stones to jewellery: Investigating technology opportunities from expired patents," Technovation, Elsevier, vol. 103(C).
    16. Pandey, Dharen Kumar & Hunjra, Ahmed Imran & Bhaskar, Ratikant & Al-Faryan, Mamdouh Abdulaziz Saleh, 2023. "Artificial intelligence, machine learning and big data in natural resources management: A comprehensive bibliometric review of literature spanning 1975–2022," Resources Policy, Elsevier, vol. 86(PA).
    17. Seok Jin Youn & Yong-Jae Lee & Ha-Eun Han & Chang-Woo Lee & Donggyun Sohn & Chulung Lee, 2024. "A Data Analytics and Machine Learning Approach to Develop a Technology Roadmap for Next-Generation Logistics Utilizing Underground Systems," Sustainability, MDPI, vol. 16(15), pages 1-32, August.
    18. Seol, Youngjin & Lee, Seunghyun & Kim, Cheolhan & Yoon, Janghyeok & Choi, Jaewoong, 2023. "Towards firm-specific technology opportunities: A rule-based machine learning approach to technology portfolio analysis," Journal of Informetrics, Elsevier, vol. 17(4).
    19. Wesley M. Cohen & You-Na Lee & John P. Walsh, 2019. "How Innovative Are Innovations? A Multidimensional, Survey-Based Approach," NBER Chapters, in: Measuring and Accounting for Innovation in the Twenty-First Century, pages 139-182, National Bureau of Economic Research, Inc.
    20. Choi, Jaewoong & Lee, Changyong & Yoon, Janghyeok, 2023. "Exploring a technology ecology for technology opportunity discovery: A link prediction approach using heterogeneous knowledge graphs," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:130:y:2025:i:8:d:10.1007_s11192-025-05394-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.