IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v128y2023i9d10.1007_s11192-023-04786-3.html
   My bibliography  Save this article

Exploring the research features of Nobel laureates in Physics based on the semantic similarity measurement

Author

Listed:
  • Jingda Ding

    (Ningbo University of Finance and Economics
    Shanghai University)

  • Yifan Chen

    (Shanghai University)

  • Chao Liu

    (Shanghai University)

Abstract

Exploring the temporal research features of Nobel laureates’ papers based on the semantic measurement indexes is helpful to understand the successful mode of scientists. For the public dataset of Nobel laureates in Physics, this study analyzes the semantic relationship between the Prize-winning papers and the other papers published by Nobel laureates in three different periods, which are the period before the laureate published the Prize-winning papers (T1), the period from publishing the Prize-winning papers to the award time (T2), and the period after winning the award (T3). We obtain the top k papers that are semantically close to the Prize-winning papers by the BERT model and use four indexes based on semantic characteristics to analyze the temporal research features of Nobel laureates’ papers. The laureates generally pay attention to the Prize-winning research at the mid-term of the T1 period, who spend an average of 1.55 times as much as the T2 period for further study in the Prize-winning field, and most of them continue for about 15 years on the Prize-winning research. In addition, we find that a few laureates published the paper semantically closest to the Prize-winning paper when they are as the Ph.D. Candidates.

Suggested Citation

  • Jingda Ding & Yifan Chen & Chao Liu, 2023. "Exploring the research features of Nobel laureates in Physics based on the semantic similarity measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5247-5275, September.
  • Handle: RePEc:spr:scient:v:128:y:2023:i:9:d:10.1007_s11192-023-04786-3
    DOI: 10.1007/s11192-023-04786-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-023-04786-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-023-04786-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tove Faber Frandsen & Jeppe Nicolaisen, 2013. "The ripple effect: Citation chain reactions of a nobel prize," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(3), pages 437-447, March.
    2. Olivier Toubia & Jonah Berger & Jehoshua Eliashberg, 2021. "How quantifying the shape of stories predicts their success," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(26), pages 2011695118-, June.
    3. Elisabeth Maria Schlagberger & Lutz Bornmann & Johann Bauer, 2016. "At what institutions did Nobel laureates do their prize-winning work? An analysis of biographical information on Nobel laureates from 1994 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 723-767, November.
    4. Amin Mazloumian & Young-Ho Eom & Dirk Helbing & Sergi Lozano & Santo Fortunato, 2011. "How Citation Boosts Promote Scientific Paradigm Shifts and Nobel Prizes," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-6, May.
    5. Christin Katharina Kreutz & Premtim Sahitaj & Ralf Schenkel, 2020. "Evaluating semantometrics from computer science publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2915-2954, December.
    6. Yves Gingras & Matthew L. Wallace, 2010. "Why it has become more difficult to predict Nobel Prize winners: a bibliometric analysis of nominees and winners of the chemistry and physics prizes (1901–2007)," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 401-412, February.
    7. José Alberto Molina & David Iñiguez & Gonzalo Ruiz & Alfonso Tarancón, 2021. "Leaders among the leaders in Economics: a network analysis of the Nobel Prize laureates," Applied Economics Letters, Taylor & Francis Journals, vol. 28(7), pages 584-589, April.
    8. Ho Fai Chan & Benno Torgler, 2015. "Do great minds appear in batches?," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(2), pages 475-488, August.
    9. Tove Faber Frandsen & Jeppe Nicolaisen, 2013. "The ripple effect: Citation chain reactions of a nobel prize," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(3), pages 437-447, March.
    10. Mikko Packalen & Jay Bhattacharya, 2019. "Age and the Trying Out of New Ideas," Journal of Human Capital, University of Chicago Press, vol. 13(2), pages 341-373.
    11. Liang, Guoqiang & Hou, Haiyan & Ding, Ying & Hu, Zhigang, 2020. "Knowledge recency to the birth of Nobel Prize-winning articles: Gender, career stage, and country," Journal of Informetrics, Elsevier, vol. 14(3).
    12. Zhou, Yuhao & Wang, Ruijie & Zeng, An & Zhang, Yi-Cheng, 2020. "Identifying prize-winning scientists by a competition-aware ranking," Journal of Informetrics, Elsevier, vol. 14(3).
    13. Ho Fai Chan & Benno Torgler, 2015. "The implications of educational and methodological background for the career success of Nobel laureates: an investigation of major awards," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 847-863, January.
    14. Ho F. Chan & Franklin G. Mixon & Benno Torgler, 2018. "Relation of early career performance and recognition to the probability of winning the Nobel Prize in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1069-1086, March.
    15. Yuxian Liu & Ronald Rousseau, 2014. "Citation analysis and the development of science: A case study using articles by some Nobel prize winners," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(2), pages 281-289, February.
    16. Daiji Kawaguchi & Ayako Kondo & Keiji Saito, 2016. "Researchers’ career transitions over the life cycle," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1435-1454, December.
    17. Ho Fai Chan & Ali Sina Önder & Benno Torgler, 2015. "Do Nobel laureates change their patterns of collaboration following prize reception?," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2215-2235, December.
    18. Chuanyi Wang & Fei Guo & Qing Wu, 2021. "The influence of academic advisors on academic network of Physics doctoral students: empirical evidence based on scientometrics analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4899-4925, June.
    19. Xie, Qing & Zhang, Xinyuan & Ding, Ying & Song, Min, 2020. "Monolingual and multilingual topic analysis using LDA and BERT embeddings," Journal of Informetrics, Elsevier, vol. 14(3).
    20. Marek Kosmulski, 2020. "Nobel laureates are not hot," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 487-495, April.
    21. Caifeng Ma & Cheng Su & Junpeng Yuan & Yishan Wu, 2012. "Papers written by Nobel Prize winners in physics before they won the prize: an analysis of their language and journal of publication," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 1151-1163, December.
    22. Erjia Yan & Zheng Chen & Kai Li, 2020. "Authors' status and the perceived quality of their work: Measuring citation sentiment change in nobel articles," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(3), pages 314-324, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Lou & Jiangen He & Lingxin Zhang & Zhijie Zhu & Yongjun Zhu, 2023. "Support behind the scenes: the relationship between acknowledgement, coauthor, and citation in Nobel articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5767-5790, October.
    2. Elisabeth Maria Schlagberger & Lutz Bornmann & Johann Bauer, 2016. "At what institutions did Nobel laureates do their prize-winning work? An analysis of biographical information on Nobel laureates from 1994 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 723-767, November.
    3. Ho Fai Chan & Benno Torgler, 2020. "Gender differences in performance of top cited scientists by field and country," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2421-2447, December.
    4. Iván Aranzales & Ho Fai Chan & Benno Torgler, 2023. "Finally! How time lapse in Nobel Prize reception affects emotionality in the Nobel Prize banquet speeches," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(7), pages 4089-4115, July.
    5. Bilal Barış Alkan & Leyla Karakuş & Bekir Direkci, 2023. "Knowledge discovery from the texts of Nobel Prize winners in literature: sentiment analysis and Latent Dirichlet Allocation," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5311-5334, September.
    6. Jianhua Hou & Bili Zheng & Yang Zhang & Chaomei Chen, 2021. "How do Price medalists’ scholarly impact change before and after their awards?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5945-5981, July.
    7. Ho F. Chan & Franklin G. Mixon & Benno Torgler, 2018. "Relation of early career performance and recognition to the probability of winning the Nobel Prize in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1069-1086, March.
    8. Jingjing Ren & Fang Wang & Minglu Li, 2023. "Dynamics and characteristics of interdisciplinary research in scientific breakthroughs: case studies of Nobel-winning research in the past 120 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4383-4419, August.
    9. Ho Fai Chan & Franklin G. Mixon & Benno Torgler, 2019. "Fame in the sciences: a culturomics approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 605-615, February.
    10. Thomas Heinze & Arlette Jappe & David Pithan, 2019. "From North American hegemony to global competition for scientific leadership? Insights from the Nobel population," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-14, April.
    11. John P A Ioannidis & Ioana-Alina Cristea & Kevin W Boyack, 2020. "Work honored by Nobel prizes clusters heavily in a few scientific fields," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-11, July.
    12. Jelnov, Pavel & Weiss, Yoram, 2022. "Influence in economics and aging," Labour Economics, Elsevier, vol. 77(C).
    13. Thomas Heinze & Joel Emanuel Fuchs, 2022. "National and organizational patterns of Nobel laureate careers in physiology/medicine, physics, and chemistry," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7273-7288, December.
    14. R. Bjørk, 2019. "The age at which Noble Prize research is conducted," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 931-939, May.
    15. R. Bjørk, 2020. "The journals in physics that publish Nobel Prize research," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 817-823, February.
    16. Julián D. Cortés & Daniel A. Andrade, 2022. "Winners and runners-up alike?—a comparison between awardees and special mention recipients of the most reputable science award in Colombia via a composite citation indicator," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
    17. Dongyu Zang & Chunli Liu, 2023. "Exploring the clinical translation intensity of papers published by the world’s top scientists in basic medicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2371-2416, April.
    18. Pandelis Mitsis, 2022. "The Nobel Prize time gap," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    19. Kong, Ling & Wang, Dongbo, 2020. "Comparison of citations and attention of cover and non-cover papers," Journal of Informetrics, Elsevier, vol. 14(4).
    20. Battiston, Pietro & Sacco, Pier Luigi & Stanca, Luca, 2022. "Cover effects on citations uncovered: Evidence from Nature," Journal of Informetrics, Elsevier, vol. 16(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:128:y:2023:i:9:d:10.1007_s11192-023-04786-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.