IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v14y2020i3s1751157719304766.html
   My bibliography  Save this article

Identifying prize-winning scientists by a competition-aware ranking

Author

Listed:
  • Zhou, Yuhao
  • Wang, Ruijie
  • Zeng, An
  • Zhang, Yi-Cheng

Abstract

Evaluating scholars’ achievements is an important problem in the science of science with applications in the evaluation of grant proposals and promotion applications. Since the number of scholars and the number of scholarly outputs grow exponentially with time, well-designed ranking metrics that have the potential to assist in these tasks are of prime importance. To rank scholars, it is important to put their achievements in perspective by comparing them with the achievements of other scholars active in the same period. We propose here a particular way of doing so: by computing the evaluated scholar's share on each year's citations which quantifies how the scholar fares in competition with the others. We assess the resulting ranking method using the American Physical Society citation data and four prestigious physics awards. Our results show that the new method significantly outperforms other ranking methods in identifying the prize laureates.

Suggested Citation

  • Zhou, Yuhao & Wang, Ruijie & Zeng, An & Zhang, Yi-Cheng, 2020. "Identifying prize-winning scientists by a competition-aware ranking," Journal of Informetrics, Elsevier, vol. 14(3).
  • Handle: RePEc:eee:infome:v:14:y:2020:i:3:s1751157719304766
    DOI: 10.1016/j.joi.2020.101038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157719304766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2020.101038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leo Egghe, 2006. "Theory and practise of the g-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 131-152, October.
    2. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    3. Mariani, Manuel Sebastian & Medo, Matúš & Zhang, Yi-Cheng, 2016. "Identification of milestone papers through time-balanced network centrality," Journal of Informetrics, Elsevier, vol. 10(4), pages 1207-1223.
    4. Abrishami, Ali & Aliakbary, Sadegh, 2019. "Predicting citation counts based on deep neural network learning techniques," Journal of Informetrics, Elsevier, vol. 13(2), pages 485-499.
    5. Erjia Yan & Ying Ding, 2009. "Applying centrality measures to impact analysis: A coauthorship network analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(10), pages 2107-2118, October.
    6. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    7. Ying Ding & Erjia Yan & Arthur Frazho & James Caverlee, 2009. "PageRank for ranking authors in co‐citation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(11), pages 2229-2243, November.
    8. Robert P. Light & David E. Polley & Katy Börner, 2014. "Open data and open code for big science of science studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1535-1551, November.
    9. Fiala, Dalibor, 2012. "Time-aware PageRank for bibliographic networks," Journal of Informetrics, Elsevier, vol. 6(3), pages 370-388.
    10. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    11. Chen, P. & Xie, H. & Maslov, S. & Redner, S., 2007. "Finding scientific gems with Google’s PageRank algorithm," Journal of Informetrics, Elsevier, vol. 1(1), pages 8-15.
    12. G. Van Hooydonk, 1997. "Fractional counting of multiauthored publications: Consequences for the impact of authors," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 48(10), pages 944-945, October.
    13. Lutz Bornmann & Hans-Dieter Daniel, 2005. "Does the h-index for ranking of scientists really work?," Scientometrics, Springer;Akadémiai Kiadó, vol. 65(3), pages 391-392, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyi Chen, 2023. "Does cross-field influence regional and field-specific distributions of highly cited researchers?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 825-840, January.
    2. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    3. Zhu, Wanying & Jin, Ching & Ma, Yifang & Xu, Cong, 2023. "Earlier recognition of scientific excellence enhances future achievements and promotes persistence," Journal of Informetrics, Elsevier, vol. 17(2).
    4. Zhao, Zhi-Dan & Chen, Jiahao & Lu, Yichuan & Zhao, Na & Jiang, Dazhi & Wang, Bing-Hong, 2021. "Dynamic patterns of open review process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    5. Yanbo Zhou & Xin-Li Xu & Xu-Hua Yang & Qu Li, 2022. "The influence of disruption on evaluating the scientific significance of papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5931-5945, October.
    6. Jingda Ding & Yifan Chen & Chao Liu, 2023. "Exploring the research features of Nobel laureates in Physics based on the semantic similarity measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5247-5275, September.
    7. Yuhao Zhou & Ruijie Wang & An Zeng, 2022. "Predicting the impact and publication date of individual scientists’ future papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1867-1882, April.
    8. Bilal Barış Alkan & Leyla Karakuş & Bekir Direkci, 2023. "Knowledge discovery from the texts of Nobel Prize winners in literature: sentiment analysis and Latent Dirichlet Allocation," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5311-5334, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruijie Wang & Yuhao Zhou & An Zeng, 2023. "Evaluating scientists by citation and disruption of their representative works," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1689-1710, March.
    2. Zhang, Fang & Wu, Shengli, 2020. "Predicting future influence of papers, researchers, and venues in a dynamic academic network," Journal of Informetrics, Elsevier, vol. 14(2).
    3. Yanan Wang & An Zeng & Ying Fan & Zengru Di, 2019. "Ranking scientific publications considering the aging characteristics of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 155-166, July.
    4. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2019. "Globalised vs averaged: Bias and ranking performance on the author level," Journal of Informetrics, Elsevier, vol. 13(1), pages 299-313.
    5. Perc, Matjaž, 2010. "Zipf’s law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia’s research as an example," Journal of Informetrics, Elsevier, vol. 4(3), pages 358-364.
    6. Parul Khurana & Kiran Sharma, 2022. "Impact of h-index on author’s rankings: an improvement to the h-index for lower-ranked authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4483-4498, August.
    7. Eleni Fragkiadaki & Georgios Evangelidis, 2016. "Three novel indirect indicators for the assessment of papers and authors based on generations of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 657-694, February.
    8. Dinesh Pradhan & Partha Sarathi Paul & Umesh Maheswari & Subrata Nandi & Tanmoy Chakraborty, 2017. "$$C^3$$ C 3 -index: a PageRank based multi-faceted metric for authors’ performance measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 253-273, January.
    9. Xu, Shuqi & Mariani, Manuel Sebastian & Lü, Linyuan & Medo, Matúš, 2020. "Unbiased evaluation of ranking metrics reveals consistent performance in science and technology citation data," Journal of Informetrics, Elsevier, vol. 14(1).
    10. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    11. Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2016. "Ranking scientific publications with similarity-preferential mechanism," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 805-816, February.
    12. Xiaorui Jiang & Xiaoping Sun & Hai Zhuge, 2013. "Graph-based algorithms for ranking researchers: not all swans are white!," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 743-759, September.
    13. Fenghua Wang & Ying Fan & An Zeng & Zengru Di, 2019. "Can we predict ESI highly cited publications?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 109-125, January.
    14. Nykl, Michal & Campr, Michal & Ježek, Karel, 2015. "Author ranking based on personalized PageRank," Journal of Informetrics, Elsevier, vol. 9(4), pages 777-799.
    15. Yanbo Zhou & Xin-Li Xu & Xu-Hua Yang & Qu Li, 2022. "The influence of disruption on evaluating the scientific significance of papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5931-5945, October.
    16. Fen Zhao & Yi Zhang & Jianguo Lu & Ofer Shai, 2019. "Measuring academic influence using heterogeneous author-citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1119-1140, March.
    17. Yuhao Zhou & Ruijie Wang & An Zeng, 2022. "Predicting the impact and publication date of individual scientists’ future papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1867-1882, April.
    18. Mariani, Manuel Sebastian & Medo, Matúš & Zhang, Yi-Cheng, 2016. "Identification of milestone papers through time-balanced network centrality," Journal of Informetrics, Elsevier, vol. 10(4), pages 1207-1223.
    19. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2018. "Author ranking evaluation at scale," Journal of Informetrics, Elsevier, vol. 12(3), pages 679-702.
    20. Dunaiski, Marcel & Visser, Willem & Geldenhuys, Jaco, 2016. "Evaluating paper and author ranking algorithms using impact and contribution awards," Journal of Informetrics, Elsevier, vol. 10(2), pages 392-407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:14:y:2020:i:3:s1751157719304766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.