IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v6y2012i3p370-388.html
   My bibliography  Save this article

Time-aware PageRank for bibliographic networks

Author

Listed:
  • Fiala, Dalibor

Abstract

In the past, recursive algorithms, such as PageRank originally conceived for the Web, have been successfully used to rank nodes in the citation networks of papers, authors, or journals. They have proved to determine prestige and not popularity, unlike citation counts. However, bibliographic networks, in contrast to the Web, have some specific features that enable the assigning of different weights to citations, thus adding more information to the process of finding prominence. For example, a citation between two authors may be weighed according to whether and when those two authors collaborated with each other, which is information that can be found in the co-authorship network. In this study, we define a couple of PageRank modifications that weigh citations between authors differently based on the information from the co-authorship graph. In addition, we put emphasis on the time of publications and citations. We test our algorithms on the Web of Science data of computer science journal articles and determine the most prominent computer scientists in the 10-year period of 1996–2005. Besides a correlation analysis, we also compare our rankings to the lists of ACM A. M. Turing Award and ACM SIGMOD E. F. Codd Innovations Award winners and find the new time-aware methods to outperform standard PageRank and its time-unaware weighted variants.

Suggested Citation

  • Fiala, Dalibor, 2012. "Time-aware PageRank for bibliographic networks," Journal of Informetrics, Elsevier, vol. 6(3), pages 370-388.
  • Handle: RePEc:eee:infome:v:6:y:2012:i:3:p:370-388
    DOI: 10.1016/j.joi.2012.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157712000119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2012.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ying Ding, 2011. "Applying weighted PageRank to author citation networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(2), pages 236-245, February.
    2. Chen, P. & Xie, H. & Maslov, S. & Redner, S., 2007. "Finding scientific gems with Google’s PageRank algorithm," Journal of Informetrics, Elsevier, vol. 1(1), pages 8-15.
    3. Ying Ding, 2011. "Applying weighted PageRank to author citation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(2), pages 236-245, February.
    4. Judit Bar-Ilan, 2010. "Web of Science with the Conference Proceedings Citation Indexes: the case of computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(3), pages 809-824, June.
    5. Erjia Yan & Ying Ding, 2010. "Weighted citation: An indicator of an article's prestige," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(8), pages 1635-1643, August.
    6. Dalibor Fiala, 2011. "Mining citation information from CiteSeer data," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(3), pages 553-562, March.
    7. Dalibor Fiala & François Rousselot & Karel Ježek, 2008. "PageRank for bibliographic networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(1), pages 135-158, July.
    8. González-Pereira, Borja & Guerrero-Bote, Vicente P. & Moya-Anegón, Félix, 2010. "A new approach to the metric of journals’ scientific prestige: The SJR indicator," Journal of Informetrics, Elsevier, vol. 4(3), pages 379-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2019. "Globalised vs averaged: Bias and ranking performance on the author level," Journal of Informetrics, Elsevier, vol. 13(1), pages 299-313.
    2. Nykl, Michal & Ježek, Karel & Fiala, Dalibor & Dostal, Martin, 2014. "PageRank variants in the evaluation of citation networks," Journal of Informetrics, Elsevier, vol. 8(3), pages 683-692.
    3. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2018. "How to evaluate rankings of academic entities using test data," Journal of Informetrics, Elsevier, vol. 12(3), pages 631-655.
    4. Yanan Wang & An Zeng & Ying Fan & Zengru Di, 2019. "Ranking scientific publications considering the aging characteristics of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 155-166, July.
    5. Zhou, Yuhao & Wang, Ruijie & Zeng, An & Zhang, Yi-Cheng, 2020. "Identifying prize-winning scientists by a competition-aware ranking," Journal of Informetrics, Elsevier, vol. 14(3).
    6. Fiala, Dalibor & Šubelj, Lovro & Žitnik, Slavko & Bajec, Marko, 2015. "Do PageRank-based author rankings outperform simple citation counts?," Journal of Informetrics, Elsevier, vol. 9(2), pages 334-348.
    7. Dunaiski, Marcel & Visser, Willem & Geldenhuys, Jaco, 2016. "Evaluating paper and author ranking algorithms using impact and contribution awards," Journal of Informetrics, Elsevier, vol. 10(2), pages 392-407.
    8. Zeng, Tong & Wu, Longfeng & Bratt, Sarah & Acuna, Daniel E., 2020. "Assigning credit to scientific datasets using article citation networks," Journal of Informetrics, Elsevier, vol. 14(2).
    9. Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2016. "Ranking scientific publications with similarity-preferential mechanism," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 805-816, February.
    10. Eleni Fragkiadaki & Georgios Evangelidis, 2016. "Three novel indirect indicators for the assessment of papers and authors based on generations of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 657-694, February.
    11. Liwei Cai & Jiahao Tian & Jiaying Liu & Xiaomei Bai & Ivan Lee & Xiangjie Kong & Feng Xia, 2019. "Scholarly impact assessment: a survey of citation weighting solutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 453-478, February.
    12. Antonia Ferrer-Sapena & Susana Díaz-Novillo & Enrique A. Sánchez-Pérez, 2017. "Measuring Time-Dynamics and Time-Stability of Journal Rankings in Mathematics and Physics by Means of Fractional p -Variations," Publications, MDPI, vol. 5(3), pages 1-14, September.
    13. Mariani, Manuel Sebastian & Medo, Matúš & Zhang, Yi-Cheng, 2016. "Identification of milestone papers through time-balanced network centrality," Journal of Informetrics, Elsevier, vol. 10(4), pages 1207-1223.
    14. Dejian Yu & Wanru Wang & Shuai Zhang & Wenyu Zhang & Rongyu Liu, 2017. "A multiple-link, mutually reinforced journal-ranking model to measure the prestige of journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 521-542, April.
    15. Niu, Qikai & Zhou, Jianlin & Zeng, An & Fan, Ying & Di, Zengru, 2016. "Which publication is your representative work?," Journal of Informetrics, Elsevier, vol. 10(3), pages 842-853.
    16. Yu Zhang & Min Wang & Morteza Saberi & Elizabeth Chang, 2020. "Knowledge fusion through academic articles: a survey of definitions, techniques, applications and challenges," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2637-2666, December.
    17. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    18. Nykl, Michal & Campr, Michal & Ježek, Karel, 2015. "Author ranking based on personalized PageRank," Journal of Informetrics, Elsevier, vol. 9(4), pages 777-799.
    19. Amodio, Pierluigi & Brugnano, Luigi & Scarselli, Filippo, 2021. "Implementation of the PaperRank and AuthorRank indices in the Scopus database," Journal of Informetrics, Elsevier, vol. 15(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fiala, Dalibor & Šubelj, Lovro & Žitnik, Slavko & Bajec, Marko, 2015. "Do PageRank-based author rankings outperform simple citation counts?," Journal of Informetrics, Elsevier, vol. 9(2), pages 334-348.
    2. Dejian Yu & Wanru Wang & Shuai Zhang & Wenyu Zhang & Rongyu Liu, 2017. "A multiple-link, mutually reinforced journal-ranking model to measure the prestige of journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 521-542, April.
    3. Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2016. "Ranking scientific publications with similarity-preferential mechanism," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 805-816, February.
    4. Nykl, Michal & Campr, Michal & Ježek, Karel, 2015. "Author ranking based on personalized PageRank," Journal of Informetrics, Elsevier, vol. 9(4), pages 777-799.
    5. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Liu, Kailiang & Xu, Zhitong & Chen, Chun-houh & Nakano, Junji & Honda, Keisuke, 2023. "Article’s scientific prestige: Measuring the impact of individual articles in the web of science," Journal of Informetrics, Elsevier, vol. 17(1).
    6. Zhang, Fang & Wu, Shengli, 2020. "Predicting future influence of papers, researchers, and venues in a dynamic academic network," Journal of Informetrics, Elsevier, vol. 14(2).
    7. Yanan Wang & An Zeng & Ying Fan & Zengru Di, 2019. "Ranking scientific publications considering the aging characteristics of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 155-166, July.
    8. Dinesh Pradhan & Partha Sarathi Paul & Umesh Maheswari & Subrata Nandi & Tanmoy Chakraborty, 2017. "$$C^3$$ C 3 -index: a PageRank based multi-faceted metric for authors’ performance measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 253-273, January.
    9. Tehmina Amjad & Ying Ding & Ali Daud & Jian Xu & Vincent Malic, 2015. "Topic-based heterogeneous rank," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 313-334, July.
    10. Yuanyuan Liu & Qiang Wu & Shijie Wu & Yong Gao, 2021. "Weighted citation based on ranking-related contribution: a new index for evaluating article impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8653-8672, October.
    11. Ludo Waltman & Erjia Yan & Nees Jan Eck, 2011. "A recursive field-normalized bibliometric performance indicator: an application to the field of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 301-314, October.
    12. Hao Wang & Hua-Wei Shen & Xue-Qi Cheng, 2016. "Scientific credit diffusion: Researcher level or paper level?," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 827-837, November.
    13. Niu, Qikai & Zhou, Jianlin & Zeng, An & Fan, Ying & Di, Zengru, 2016. "Which publication is your representative work?," Journal of Informetrics, Elsevier, vol. 10(3), pages 842-853.
    14. Yanbo Zhou & Xin-Li Xu & Xu-Hua Yang & Qu Li, 2022. "The influence of disruption on evaluating the scientific significance of papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5931-5945, October.
    15. Ruijie Wang & Yuhao Zhou & An Zeng, 2023. "Evaluating scientists by citation and disruption of their representative works," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1689-1710, March.
    16. Zeng, Tong & Wu, Longfeng & Bratt, Sarah & Acuna, Daniel E., 2020. "Assigning credit to scientific datasets using article citation networks," Journal of Informetrics, Elsevier, vol. 14(2).
    17. Nykl, Michal & Ježek, Karel & Fiala, Dalibor & Dostal, Martin, 2014. "PageRank variants in the evaluation of citation networks," Journal of Informetrics, Elsevier, vol. 8(3), pages 683-692.
    18. Walters, William H., 2017. "Do subjective journal ratings represent whole journals or typical articles? Unweighted or weighted citation impact?," Journal of Informetrics, Elsevier, vol. 11(3), pages 730-744.
    19. Ding, Ying & Liu, Xiaozhong & Guo, Chun & Cronin, Blaise, 2013. "The distribution of references across texts: Some implications for citation analysis," Journal of Informetrics, Elsevier, vol. 7(3), pages 583-592.
    20. Yu Zhang & Min Wang & Morteza Saberi & Elizabeth Chang, 2022. "Analysing academic paper ranking algorithms using test data and benchmarks: an investigation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4045-4074, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:6:y:2012:i:3:p:370-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.