IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v14y2020i2s1751157719301841.html
   My bibliography  Save this article

Assigning credit to scientific datasets using article citation networks

Author

Listed:
  • Zeng, Tong
  • Wu, Longfeng
  • Bratt, Sarah
  • Acuna, Daniel E.

Abstract

A citation is a well-established mechanism for connecting scientific artifacts. Citation networks are used by citation analysis for a variety of reasons, prominently to give credit to scientists’ work. However, because of current citation practices, scientists tend to cite only publications, leaving out other types of artifacts such as datasets. Datasets then do not get appropriate credit even though they are increasingly reused and experimented with. We develop a network flow measure, called DataRank, aimed at solving this gap. DataRank assigns a relative value to each node in the network based on how citations flow through the graph, differentiating publication and dataset flow rates. We evaluate the quality of DataRank by estimating its accuracy at predicting the usage of real datasets: web visits to GenBank and downloads of Figshare datasets. We show that DataRank is better at predicting this usage compared to alternatives while offering additional interpretable outcomes. We discuss improvements to citation behavior and algorithms to properly track and assign credit to datasets.

Suggested Citation

  • Zeng, Tong & Wu, Longfeng & Bratt, Sarah & Acuna, Daniel E., 2020. "Assigning credit to scientific datasets using article citation networks," Journal of Informetrics, Elsevier, vol. 14(2).
  • Handle: RePEc:eee:infome:v:14:y:2020:i:2:s1751157719301841
    DOI: 10.1016/j.joi.2020.101013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157719301841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2020.101013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alawi A Alsheikh-Ali & Waqas Qureshi & Mouaz H Al-Mallah & John P A Ioannidis, 2011. "Public Availability of Published Research Data in High-Impact Journals," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-4, September.
    2. Heather A. Piwowar & Todd J. Vision & Michael C. Whitlock, 2011. "Data archiving is a good investment," Nature, Nature, vol. 473(7347), pages 285-285, May.
    3. Moed, H. F. & Burger, W. J. M. & Frankfort, J. G. & Van Raan, A. F. J., 1985. "The use of bibliometric data for the measurement of university research performance," Research Policy, Elsevier, vol. 14(3), pages 131-149, June.
    4. Jevin D. West & Michael C. Jensen & Ralph J. Dandrea & Gregory J. Gordon & Carl T. Bergstrom, 2013. "Author‐level Eigenfactor metrics: Evaluating the influence of authors, institutions, and countries within the social science research network community," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(4), pages 787-801, April.
    5. Nicolas Robinson-García & Evaristo Jiménez-Contreras & Daniel Torres-Salinas, 2016. "Analyzing data citation practices using the data citation index," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(12), pages 2964-2975, December.
    6. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
    7. Heather Piwowar, 2013. "Value all research products," Nature, Nature, vol. 493(7431), pages 159-159, January.
    8. Lokman I. Meho & Kiduk Yang, 2007. "Impact of data sources on citation counts and rankings of LIS faculty: Web of science versus scopus and google scholar," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(13), pages 2105-2125, November.
    9. Ying Ding, 2011. "Applying weighted PageRank to author citation networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(2), pages 236-245, February.
    10. Heather A Piwowar & Roger S Day & Douglas B Fridsma, 2007. "Sharing Detailed Research Data Is Associated with Increased Citation Rate," PLOS ONE, Public Library of Science, vol. 2(3), pages 1-5, March.
    11. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    12. Franceschet, Massimo & Colavizza, Giovanni, 2017. "TimeRank: A dynamic approach to rate scholars using citations," Journal of Informetrics, Elsevier, vol. 11(4), pages 1128-1141.
    13. Robinson-Garcia, Nicolas & Mongeon, Philippe & Jeng, Wei & Costas, Rodrigo, 2017. "DataCite as a novel bibliometric source: Coverage, strengths and limitations," Journal of Informetrics, Elsevier, vol. 11(3), pages 841-854.
    14. Gianmaria Silvello, 2018. "Theory and practice of data citation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(1), pages 6-20, January.
    15. Ying Ding & Erjia Yan & Arthur Frazho & James Caverlee, 2009. "PageRank for ranking authors in co‐citation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(11), pages 2229-2243, November.
    16. Hyoungjoo Park & Sukjin You & Dietmar Wolfram, 2018. "Informal data citation for data sharing and reuse is more common than formal data citation in biomedical fields," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(11), pages 1346-1354, November.
    17. Fiala, Dalibor, 2012. "Time-aware PageRank for bibliographic networks," Journal of Informetrics, Elsevier, vol. 6(3), pages 370-388.
    18. Chen, P. & Xie, H. & Maslov, S. & Redner, S., 2007. "Finding scientific gems with Google’s PageRank algorithm," Journal of Informetrics, Elsevier, vol. 1(1), pages 8-15.
    19. Jason Priem, 2013. "Beyond the paper," Nature, Nature, vol. 495(7442), pages 437-440, March.
    20. Arthur M. Diamond Jr., 1986. "What is a Citation Worth?," Journal of Human Resources, University of Wisconsin Press, vol. 21(2), pages 200-215.
    21. Ying Ding, 2011. "Applying weighted PageRank to author citation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(2), pages 236-245, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dosso, Dennis & Silvello, Gianmaria, 2020. "Data credit distribution: A new method to estimate databases impact," Journal of Informetrics, Elsevier, vol. 14(4).
    2. Yadav, Pratyush & Pervin, Nargis, 2022. "Towards efficient navigation in digital libraries: Leveraging popularity, semantics and communities to recommend scholarly articles," Journal of Informetrics, Elsevier, vol. 16(4).
    3. Jenny Heddes & Pim Meerdink & Miguel Pieters & Maarten Marx, 2021. "The Automatic Detection of Dataset Names in Scientific Articles," Data, MDPI, vol. 6(8), pages 1-19, August.
    4. Tokmachev, Andrey M., 2023. "Hidden scales in statistics of citation indicators," Journal of Informetrics, Elsevier, vol. 17(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanan Wang & An Zeng & Ying Fan & Zengru Di, 2019. "Ranking scientific publications considering the aging characteristics of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 155-166, July.
    2. Nykl, Michal & Campr, Michal & Ježek, Karel, 2015. "Author ranking based on personalized PageRank," Journal of Informetrics, Elsevier, vol. 9(4), pages 777-799.
    3. Fiala, Dalibor & Šubelj, Lovro & Žitnik, Slavko & Bajec, Marko, 2015. "Do PageRank-based author rankings outperform simple citation counts?," Journal of Informetrics, Elsevier, vol. 9(2), pages 334-348.
    4. Dejian Yu & Wanru Wang & Shuai Zhang & Wenyu Zhang & Rongyu Liu, 2017. "A multiple-link, mutually reinforced journal-ranking model to measure the prestige of journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 521-542, April.
    5. Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2016. "Ranking scientific publications with similarity-preferential mechanism," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 805-816, February.
    6. Dunaiski, Marcel & Geldenhuys, Jaco & Visser, Willem, 2019. "Globalised vs averaged: Bias and ranking performance on the author level," Journal of Informetrics, Elsevier, vol. 13(1), pages 299-313.
    7. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Liu, Kailiang & Xu, Zhitong & Chen, Chun-houh & Nakano, Junji & Honda, Keisuke, 2023. "Article’s scientific prestige: Measuring the impact of individual articles in the web of science," Journal of Informetrics, Elsevier, vol. 17(1).
    8. Fiala, Dalibor, 2012. "Time-aware PageRank for bibliographic networks," Journal of Informetrics, Elsevier, vol. 6(3), pages 370-388.
    9. Zhang, Fang & Wu, Shengli, 2020. "Predicting future influence of papers, researchers, and venues in a dynamic academic network," Journal of Informetrics, Elsevier, vol. 14(2).
    10. Dinesh Pradhan & Partha Sarathi Paul & Umesh Maheswari & Subrata Nandi & Tanmoy Chakraborty, 2017. "$$C^3$$ C 3 -index: a PageRank based multi-faceted metric for authors’ performance measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 253-273, January.
    11. Hao Wang & Hua-Wei Shen & Xue-Qi Cheng, 2016. "Scientific credit diffusion: Researcher level or paper level?," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 827-837, November.
    12. Zhou, Yuhao & Wang, Ruijie & Zeng, An & Zhang, Yi-Cheng, 2020. "Identifying prize-winning scientists by a competition-aware ranking," Journal of Informetrics, Elsevier, vol. 14(3).
    13. Mike Thelwall & Marcus Munafò & Amalia Mas-Bleda & Emma Stuart & Meiko Makita & Verena Weigert & Chris Keene & Nushrat Khan & Katie Drax & Kayvan Kousha, 2020. "Is useful research data usually shared? An investigation of genome-wide association study summary statistics," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-11, February.
    14. Yanbo Zhou & Xin-Li Xu & Xu-Hua Yang & Qu Li, 2022. "The influence of disruption on evaluating the scientific significance of papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5931-5945, October.
    15. Fen Zhao & Yi Zhang & Jianguo Lu & Ofer Shai, 2019. "Measuring academic influence using heterogeneous author-citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1119-1140, March.
    16. Sixto-Costoya Andrea & Robinson-Garcia Nicolas & Leeuwen Thed & Costas Rodrigo, 2021. "Exploring the relevance of ORCID as a source of study of data sharing activities at the individual-level: a methodological discussion," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7149-7165, August.
    17. Ruijie Wang & Yuhao Zhou & An Zeng, 2023. "Evaluating scientists by citation and disruption of their representative works," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1689-1710, March.
    18. Dunaiski, Marcel & Visser, Willem & Geldenhuys, Jaco, 2016. "Evaluating paper and author ranking algorithms using impact and contribution awards," Journal of Informetrics, Elsevier, vol. 10(2), pages 392-407.
    19. Nykl, Michal & Ježek, Karel & Fiala, Dalibor & Dostal, Martin, 2014. "PageRank variants in the evaluation of citation networks," Journal of Informetrics, Elsevier, vol. 8(3), pages 683-692.
    20. Takanori Ida & Naomi Fukuzawa, 2013. "Effects of large-scale research funding programs: a Japanese case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1253-1273, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:14:y:2020:i:2:s1751157719301841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.