IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v127y2022i2d10.1007_s11192-021-04229-x.html
   My bibliography  Save this article

Completing features for author name disambiguation (AND): an empirical analysis

Author

Listed:
  • Humaira Waqas

    (Capital University of Science and Technology)

  • Abdul Qadir

    (Capital University of Science and Technology)

Abstract

This study presents a feature enriched AND dataset to develop diverse and better performance achieving AND techniques, by utilizing AND features which have better discriminating abilities to solve this problem. Current AND datasets have limited number of useful AND features in them, some of them have been curated keeping in mind specific scenarios or contexts and some of them are domain specific. Rather than limiting the labelled datasets to be domain specific, contextual or hold limited feature values, it is better to leave their usage limit as a choice with respect to the technique which is trying to solve this problem. In this paper, our proposed labelled dataset “CustAND” provides a set of 7886 publication records, where each record covers more than eleven useful features values. The dataset covers multi domains as well as different ethnical group authors. CustAND is collected from multiple web sources, where raw data is extracted from digital libraries and search engines. This data is later cross checked, hand labelled and confirmed (authorship confirmation) by a team of graduate students with 100% accuracy. The raw data after pre-processing is validated by checking author’s personal web pages, different profile pages, their affiliations, and emails. This new dataset complements the availability of useful feature values which are crucial in developing generic and better performance achieving techniques to solve the author’s name ambiguity problem generally faced by the digital libraries.

Suggested Citation

  • Humaira Waqas & Abdul Qadir, 2022. "Completing features for author name disambiguation (AND): an empirical analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 1039-1063, February.
  • Handle: RePEc:spr:scient:v:127:y:2022:i:2:d:10.1007_s11192-021-04229-x
    DOI: 10.1007/s11192-021-04229-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-04229-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-04229-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinseok Kim & Jason Owen-Smith, 2021. "ORCID-linked labeled data for evaluating author name disambiguation at scale," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2057-2083, March.
    2. Humaira Waqas & Muhammad Abdul Qadir, 2021. "Multilayer heuristics based clustering framework (MHCF) for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7637-7678, September.
    3. Ricardo G. Cota & Anderson A. Ferreira & Cristiano Nascimento & Marcos André Gonçalves & Alberto H. F. Laender, 2010. "An unsupervised heuristic-based hierarchical method for name disambiguation in bibliographic citations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(9), pages 1853-1870, September.
    4. Ricardo G. Cota & Anderson A. Ferreira & Cristiano Nascimento & Marcos André Gonçalves & Alberto H. F. Laender, 2010. "An unsupervised heuristic‐based hierarchical method for name disambiguation in bibliographic citations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(9), pages 1853-1870, September.
    5. Michael Levin & Stefan Krawczyk & Steven Bethard & Dan Jurafsky, 2012. "Citation‐based bootstrapping for large‐scale author disambiguation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(5), pages 1030-1047, May.
    6. Mark-Christoph Müller & Florian Reitz & Nicolas Roy, 2017. "Data sets for author name disambiguation: an empirical analysis and a new resource," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1467-1500, June.
    7. Jinseok Kim & Jenna Kim & Jason Owen‐Smith, 2021. "Ethnicity‐based name partitioning for author name disambiguation using supervised machine learning," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(8), pages 979-994, August.
    8. Song, Min & Kim, Erin Hea-Jin & Kim, Ha Jin, 2015. "Exploring author name disambiguation on PubMed-scale," Journal of Informetrics, Elsevier, vol. 9(4), pages 924-941.
    9. Jia Zhu & Xingcheng Wu & Xueqin Lin & Changqin Huang & Gabriel Pui Cheong Fung & Yong Tang, 2018. "A novel multiple layers name disambiguation framework for digital libraries using dynamic clustering," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 781-794, March.
    10. Jinseok Kim & Jenna Kim, 2020. "Effect of forename string on author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(7), pages 839-855, July.
    11. Jinseok Kim & Jinmo Kim & Jason Owen-Smith, 2019. "Generating automatically labeled data for author name disambiguation: an iterative clustering method," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 253-280, January.
    12. Anderson A. Ferreira & Adriano Veloso & Marcos André Gonçalves & Alberto H. F. Laender, 2014. "Self-training author name disambiguation for information scarce scenarios," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(6), pages 1257-1278, June.
    13. Michael Levin & Stefan Krawczyk & Steven Bethard & Dan Jurafsky, 2012. "Citation-based bootstrapping for large-scale author disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(5), pages 1030-1047, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinseok Kim & Jenna Kim & Jason Owen‐Smith, 2021. "Ethnicity‐based name partitioning for author name disambiguation using supervised machine learning," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(8), pages 979-994, August.
    2. Jinseok Kim & Jason Owen-Smith, 2021. "ORCID-linked labeled data for evaluating author name disambiguation at scale," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2057-2083, March.
    3. Ciriaco Andrea D’Angelo & Nees Jan Eck, 2020. "Collecting large-scale publication data at the level of individual researchers: a practical proposal for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 883-907, May.
    4. Jinseok Kim, 2019. "A fast and integrative algorithm for clustering performance evaluation in author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 661-681, August.
    5. Humaira Waqas & Muhammad Abdul Qadir, 2021. "Multilayer heuristics based clustering framework (MHCF) for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7637-7678, September.
    6. Jinseok Kim & Jenna Kim, 2020. "Effect of forename string on author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(7), pages 839-855, July.
    7. Jinseok Kim & Jinmo Kim & Jason Owen-Smith, 2019. "Generating automatically labeled data for author name disambiguation: an iterative clustering method," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 253-280, January.
    8. Li Zhang & Wei Lu & Jinqing Yang, 2023. "LAGOS‐AND: A large gold standard dataset for scholarly author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(2), pages 168-185, February.
    9. KM. Pooja & Samrat Mondal & Joydeep Chandra, 2021. "Exploiting similarities across multiple dimensions for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7525-7560, September.
    10. Jinseok Kim & Jenna Kim, 2018. "The impact of imbalanced training data on machine learning for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 511-526, October.
    11. Jan Schulz, 2016. "Using Monte Carlo simulations to assess the impact of author name disambiguation quality on different bibliometric analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1283-1298, June.
    12. Jinseok Kim, 2018. "Evaluating author name disambiguation for digital libraries: a case of DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1867-1886, September.
    13. Cristian Santini & Genet Asefa Gesese & Silvio Peroni & Aldo Gangemi & Harald Sack & Mehwish Alam, 2022. "A knowledge graph embeddings based approach for author name disambiguation using literals," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4887-4912, August.
    14. Yuto Chikazawa & Marie Katsurai & Ikki Ohmukai, 2021. "Multilingual author matching across different academic databases: a case study on KAKEN, DBLP, and PubMed," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2311-2327, March.
    15. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    16. Gordon Rogers & Martin Szomszor & Jonathan Adams, 2020. "Sample size in bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 777-794, October.
    17. Hao Wu & Bo Li & Yijian Pei & Jun He, 2014. "Unsupervised author disambiguation using Dempster–Shafer theory," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1955-1972, December.
    18. Song, Min & Kim, Erin Hea-Jin & Kim, Ha Jin, 2015. "Exploring author name disambiguation on PubMed-scale," Journal of Informetrics, Elsevier, vol. 9(4), pages 924-941.
    19. Shuiqing Huang & Bo Yang & Sulan Yan & Ronald Rousseau, 2014. "Institution name disambiguation for research assessment," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 823-838, June.
    20. Mehmet Ali Abdulhayoglu & Bart Thijs, 2017. "Use of ResearchGate and Google CSE for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1965-1985, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:2:d:10.1007_s11192-021-04229-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.