IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v120y2019i2d10.1007_s11192-019-03143-7.html
   My bibliography  Save this article

A fast and integrative algorithm for clustering performance evaluation in author name disambiguation

Author

Listed:
  • Jinseok Kim

    (University of Michigan)

Abstract

Clustering results in author name disambiguation are often evaluated by measures such as Cluster-F, K-metric, Pairwise-F, Splitting and Lumping Error, and B-cubed. Although these measures have different evaluation approaches, this paper shows that they can be calculated in a single framework by a set of common steps that compare truth and predicted clusters through two hash tables recording information about name instances with their predicted cluster indices and frequencies of those indices per truth cluster. This integrative calculation reduces greatly calculation runtime, which is scalable to a clustering task involving millions of name instances within a few seconds. During the integration process, B-cubed and K-metric are shown to produce the same precision and recall scores. In addition, name instance pairs for Pairwise-F are counted using a heuristic, which enables the proposed method to surpass a state-of-the-art algorithm in speedy calculation. Details of the integrative calculation are described with examples and pseudo-code to assist scholars to implement each measure easily and validate the correctness of implementation. The integrative calculation will help scholars compare similarities and differences of multiple measures before they select ones that characterize best the clustering performances of their disambiguation methods.

Suggested Citation

  • Jinseok Kim, 2019. "A fast and integrative algorithm for clustering performance evaluation in author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 661-681, August.
  • Handle: RePEc:spr:scient:v:120:y:2019:i:2:d:10.1007_s11192-019-03143-7
    DOI: 10.1007/s11192-019-03143-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03143-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03143-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinseok Kim & Jenna Kim, 2018. "The impact of imbalanced training data on machine learning for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 511-526, October.
    2. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    3. Yu Liu & Weijia Li & Zhen Huang & Qiang Fang, 2015. "A fast method based on multiple clustering for name disambiguation in bibliographic citations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(3), pages 634-644, March.
    4. Ricardo G. Cota & Anderson A. Ferreira & Cristiano Nascimento & Marcos André Gonçalves & Alberto H. F. Laender, 2010. "An unsupervised heuristic-based hierarchical method for name disambiguation in bibliographic citations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(9), pages 1853-1870, September.
    5. Wanli Liu & Rezarta Islamaj Doğan & Sun Kim & Donald C. Comeau & Won Kim & Lana Yeganova & Zhiyong Lu & W. John Wilbur, 2014. "Author name disambiguation for PubMed," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 765-781, April.
    6. Brent D Fegley & Vetle I Torvik, 2013. "Has Large-Scale Named-Entity Network Analysis Been Resting on a Flawed Assumption?," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-16, July.
    7. Dongwook Shin & Taehwan Kim & Joongmin Choi & Jungsun Kim, 2014. "Author name disambiguation using a graph model with node splitting and merging based on bibliographic information," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 15-50, July.
    8. Lutz Bornmann & Rüdiger Mutz, 2015. "Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(11), pages 2215-2222, November.
    9. Ricardo G. Cota & Anderson A. Ferreira & Cristiano Nascimento & Marcos André Gonçalves & Alberto H. F. Laender, 2010. "An unsupervised heuristic‐based hierarchical method for name disambiguation in bibliographic citations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(9), pages 1853-1870, September.
    10. Hongqi Han & Changqing Yao & Yuan Fu & Yongsheng Yu & Yunliang Zhang & Shuo Xu, 2017. "Semantic fingerprints-based author name disambiguation in Chinese documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1879-1896, June.
    11. Hao Wu & Bo Li & Yijian Pei & Jun He, 2014. "Unsupervised author disambiguation using Dempster–Shafer theory," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1955-1972, December.
    12. Michael Levin & Stefan Krawczyk & Steven Bethard & Dan Jurafsky, 2012. "Citation‐based bootstrapping for large‐scale author disambiguation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(5), pages 1030-1047, May.
    13. Mark-Christoph Müller & Florian Reitz & Nicolas Roy, 2017. "Data sets for author name disambiguation: an empirical analysis and a new resource," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1467-1500, June.
    14. Andreas Strotmann & Dangzhi Zhao, 2012. "Author name disambiguation: What difference does it make in author-based citation analysis?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(9), pages 1820-1833, September.
    15. Jia Zhu & Xingcheng Wu & Xueqin Lin & Changqin Huang & Gabriel Pui Cheong Fung & Yong Tang, 2018. "A novel multiple layers name disambiguation framework for digital libraries using dynamic clustering," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 781-794, March.
    16. Andreas Strotmann & Dangzhi Zhao, 2012. "Author name disambiguation: What difference does it make in author‐based citation analysis?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(9), pages 1820-1833, September.
    17. Anderson A. Ferreira & Adriano Veloso & Marcos André Gonçalves & Alberto H. F. Laender, 2014. "Self-training author name disambiguation for information scarce scenarios," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(6), pages 1257-1278, June.
    18. Alan Filipe Santana & Marcos André Gonçalves & Alberto H. F. Laender & Anderson A. Ferreira, 2017. "Incremental author name disambiguation by exploiting domain-specific heuristics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(4), pages 931-945, April.
    19. Agustín D. Delgado & Raquel Martínez & Soto Montalvo & Víctor Fresno, 2017. "Person Name Disambiguation in the Web Using Adaptive Threshold Clustering," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(7), pages 1751-1762, July.
    20. Jinseok Kim, 2018. "Evaluating author name disambiguation for digital libraries: a case of DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1867-1886, September.
    21. Jinseok Kim & Jana Diesner, 2016. "Distortive effects of initial-based name disambiguation on measurements of large-scale coauthorship networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(6), pages 1446-1461, June.
    22. Michael Levin & Stefan Krawczyk & Steven Bethard & Dan Jurafsky, 2012. "Citation-based bootstrapping for large-scale author disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(5), pages 1030-1047, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rehs, Andreas, 2021. "A supervised machine learning approach to author disambiguation in the Web of Science," Journal of Informetrics, Elsevier, vol. 15(3).
    2. Jinseok Kim & Jason Owen-Smith, 2021. "ORCID-linked labeled data for evaluating author name disambiguation at scale," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2057-2083, March.
    3. Jinseok Kim & Jenna Kim, 2020. "Effect of forename string on author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(7), pages 839-855, July.
    4. KM. Pooja & Samrat Mondal & Joydeep Chandra, 2021. "Exploiting similarities across multiple dimensions for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7525-7560, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinseok Kim & Jenna Kim, 2020. "Effect of forename string on author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(7), pages 839-855, July.
    2. Jinseok Kim & Jinmo Kim & Jason Owen-Smith, 2019. "Generating automatically labeled data for author name disambiguation: an iterative clustering method," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 253-280, January.
    3. Jinseok Kim & Jenna Kim & Jason Owen‐Smith, 2021. "Ethnicity‐based name partitioning for author name disambiguation using supervised machine learning," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(8), pages 979-994, August.
    4. Jinseok Kim & Jason Owen-Smith, 2021. "ORCID-linked labeled data for evaluating author name disambiguation at scale," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2057-2083, March.
    5. Jinseok Kim, 2018. "Evaluating author name disambiguation for digital libraries: a case of DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1867-1886, September.
    6. Humaira Waqas & Muhammad Abdul Qadir, 2021. "Multilayer heuristics based clustering framework (MHCF) for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7637-7678, September.
    7. Ciriaco Andrea D’Angelo & Nees Jan Eck, 2020. "Collecting large-scale publication data at the level of individual researchers: a practical proposal for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 883-907, May.
    8. Jinseok Kim & Jenna Kim, 2018. "The impact of imbalanced training data on machine learning for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 511-526, October.
    9. Humaira Waqas & Abdul Qadir, 2022. "Completing features for author name disambiguation (AND): an empirical analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 1039-1063, February.
    10. Rehs, Andreas, 2021. "A supervised machine learning approach to author disambiguation in the Web of Science," Journal of Informetrics, Elsevier, vol. 15(3).
    11. KM. Pooja & Samrat Mondal & Joydeep Chandra, 2021. "Exploiting similarities across multiple dimensions for author name disambiguation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7525-7560, September.
    12. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    13. Mark-Christoph Müller & Florian Reitz & Nicolas Roy, 2017. "Data sets for author name disambiguation: an empirical analysis and a new resource," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1467-1500, June.
    14. Jan Schulz, 2016. "Using Monte Carlo simulations to assess the impact of author name disambiguation quality on different bibliometric analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1283-1298, June.
    15. Song, Min & Kim, Erin Hea-Jin & Kim, Ha Jin, 2015. "Exploring author name disambiguation on PubMed-scale," Journal of Informetrics, Elsevier, vol. 9(4), pages 924-941.
    16. Li Zhang & Wei Lu & Jinqing Yang, 2023. "LAGOS‐AND: A large gold standard dataset for scholarly author name disambiguation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(2), pages 168-185, February.
    17. Helena Mihaljević & Lucía Santamaría, 2021. "Disambiguation of author entities in ADS using supervised learning and graph theory methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3893-3917, May.
    18. Janaína Gomide & Hugo Kling & Daniel Figueiredo, 2017. "Name usage pattern in the synonym ambiguity problem in bibliographic data," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 747-766, August.
    19. Deyun Yin & Kazuyuki Motohashi & Jianwei Dang, 2020. "Large-scale name disambiguation of Chinese patent inventors (1985–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 765-790, February.
    20. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:120:y:2019:i:2:d:10.1007_s11192-019-03143-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.