IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i5d10.1007_s11192-021-03945-8.html
   My bibliography  Save this article

Developing a risk-adaptive technology roadmap using a Bayesian network and topic modeling under deep uncertainty

Author

Listed:
  • Yujin Jeong

    (Dongguk University)

  • Hyejin Jang

    (Dongguk University)

  • Byungun Yoon

    (Dongguk University)

Abstract

Firms today face rapidly changing and complex environments that managers and leaders must navigate carefully because confronting these changes is directly connected with success and failure in business. In particular, business leaders are adopting a new paradigm of planning, dynamic adaptive plans, which react adaptively to uncertainties by adjusting plans according to rapid changes in circumstances. However, these dynamic plans have been applied in larger-scale industries such as wastewater management in longer-range time frames. This paper follows the dynamic adaptive plan paradigm but transfers it to the technology management context with shorter-range action plans. Based on this new paradigm of risk management and technology planning, we propose a risk-adaptive technology roadmap (TRM) that can adapt to changing complex environments. First we identify risk by topic modeling based on futuristic data and then by sentiment analysis. Second, for the derived risks, we determine new and alternative plans by co-occurrence of risk-related keywords. Third, we convert an existing TRM to network topology with adaptive plans and construct a conditional probability table for the network. Finally, we estimate posterior probability and infer it by Bayesian network by adjusting plans depending on occurrence of risk events. Based on this posterior probability, we remap the paths in the previous TRM to new maps, and we apply our proposed approach to the field of artificial intelligence to validate its feasibility. Our research contributes to the possibility of using dynamic adaptive planning with technology as well as to increase the sustainability of technology roadmapping.

Suggested Citation

  • Yujin Jeong & Hyejin Jang & Byungun Yoon, 2021. "Developing a risk-adaptive technology roadmap using a Bayesian network and topic modeling under deep uncertainty," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3697-3722, May.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:5:d:10.1007_s11192-021-03945-8
    DOI: 10.1007/s11192-021-03945-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-03945-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-03945-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warren E. Walker & Marjolijn Haasnoot & Jan H. Kwakkel, 2013. "Adapt or Perish: A Review of Planning Approaches for Adaptation under Deep Uncertainty," Sustainability, MDPI, vol. 5(3), pages 1-25, March.
    2. Zhang, Xian & Fan, Jing-Li & Wei, Yi-Ming, 2013. "Technology roadmap study on carbon capture, utilization and storage in China," Energy Policy, Elsevier, vol. 59(C), pages 536-550.
    3. Lee, Changyong & Song, Bomi & Park, Yongtae, 2015. "An instrument for scenario-based technology roadmapping: How to assess the impacts of future changes on organisational plans," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 285-301.
    4. Marjolijn Haasnoot & Hans Middelkoop & Astrid Offermans & Eelco Beek & Willem Deursen, 2012. "Exploring pathways for sustainable water management in river deltas in a changing environment," Climatic Change, Springer, vol. 115(3), pages 795-819, December.
    5. Park, Hyunkyu & Phaal, Rob & Ho, Jae-Yun & O'Sullivan, Eoin, 2020. "Twenty years of technology and strategic roadmapping research: A school of thought perspective," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    6. Kwakkel, Jan H. & Auping, Willem L. & Pruyt, Erik, 2013. "Dynamic scenario discovery under deep uncertainty: The future of copper," Technological Forecasting and Social Change, Elsevier, vol. 80(4), pages 789-800.
    7. Siebelink, Remco & Halman, Johannes I.M. & Hofman, Erwin, 2016. "Scenario-Driven Roadmapping to cope with uncertainty: Its application in the construction industry," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 226-238.
    8. Munan Li & Alan L. Porter, 2018. "Facilitating the discovery of relevant studies on risk analysis for three-dimensional printing based on an integrated framework," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 277-300, January.
    9. Mauricio Marrone, 2020. "Application of entity linking to identify research fronts and trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 357-379, January.
    10. Geum, Youngjung & Lee, HyeonJeong & Lee, Youngjo & Park, Yongtae, 2015. "Development of data-driven technology roadmap considering dependency: An ARM-based technology roadmapping," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 264-279.
    11. Samira Ranaei & Arho Suominen & Alan Porter & Stephen Carley, 2020. "Evaluating technological emergence using text analytics: two case technologies and three approaches," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 215-247, January.
    12. Hansen, Christoph & Daim, Tugrul & Ernst, Horst & Herstatt, Cornelius, 2016. "The future of rail automation: A scenario-based technology roadmap for the rail automation market," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 196-212.
    13. Ralph Gailis & Ajith Gunatilaka & Leo Lopes & Alex Skvortsov & Kate Smith-Miles, 2014. "Managing uncertainty in early estimation of epidemic behaviors using scenario trees," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 828-842, August.
    14. Lawrence, Judy & Haasnoot, Marjolijn, 2017. "What it took to catalyse uptake of dynamic adaptive pathways planning to address climate change uncertainty," Environmental Science & Policy, Elsevier, vol. 68(C), pages 47-57.
    15. Islam, Rakibul & Khan, Faisal & Venkatesan, Ramchandran, 2017. "Real time risk analysis of kick detection: Testing and validation," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 25-37.
    16. Xu, Guannan & Wu, Yuchen & Minshall, Tim & Zhou, Yuan, 2018. "Exploring innovation ecosystems across science, technology, and business: A case of 3D printing in China," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 208-221.
    17. Dieter Helm, 2020. "The Environmental Impacts of the Coronavirus," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(1), pages 21-38, May.
    18. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    19. Minchul Lee & Min Song, 2020. "Incorporating citation impact into analysis of research trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1191-1224, August.
    20. Gary Yohe & Ferenc Toth, 2000. "Adaptation and the Guardrail Approach to Tolerable Climate Change," Climatic Change, Springer, vol. 45(1), pages 103-128, April.
    21. Lee, Hakyeon & Geum, Youngjung, 2017. "Development of the scenario-based technology roadmap considering layer heterogeneity: An approach using CIA and AHP," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 12-24.
    22. Hamarat, Caner & Kwakkel, Jan H. & Pruyt, Erik, 2013. "Adaptive Robust Design under deep uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 408-418.
    23. Khakzad, Nima, 2015. "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 263-272.
    24. S. Sivanandham & M. S. Gajanand, 2020. "Platooning for sustainable freight transportation: an adoptable practice in the near future?," Transport Reviews, Taylor & Francis Journals, vol. 40(5), pages 581-606, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Alcantara, Douglas Pedro & Martens, Mauro Luiz, 2019. "Technology Roadmapping (TRM): a systematic review of the literature focusing on models," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 127-138.
    2. Park, Hyunkyu & Phaal, Rob & Ho, Jae-Yun & O'Sullivan, Eoin, 2020. "Twenty years of technology and strategic roadmapping research: A school of thought perspective," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    3. Luciano Raso & Jan Kwakkel & Jos Timmermans, 2019. "Assessing the Capacity of Adaptive Policy Pathways to Adapt on Time by Mapping Trigger Values to Their Outcomes," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    4. Yu, Xiang & Zhang, Ben, 2019. "Obtaining advantages from technology revolution: A patent roadmap for competition analysis and strategy planning," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 273-283.
    5. Judy Lawrence & Robert Bell & Adolf Stroombergen, 2019. "A Hybrid Process to Address Uncertainty and Changing Climate Risk in Coastal Areas Using Dynamic Adaptive Pathways Planning, Multi-Criteria Decision Analysis & Real Options Analysis: A New Zealand App," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    6. Jan H. Kwakkel, 2019. "A generalized many‐objective optimization approach for scenario discovery," Futures & Foresight Science, John Wiley & Sons, vol. 1(2), June.
    7. Jan Kwakkel & Marjolijn Haasnoot & Warren Walker, 2015. "Developing dynamic adaptive policy pathways: a computer-assisted approach for developing adaptive strategies for a deeply uncertain world," Climatic Change, Springer, vol. 132(3), pages 373-386, October.
    8. Moallemi, Enayat A. & Elsawah, Sondoss & Ryan, Michael J., 2020. "Robust decision making and Epoch–Era analysis: A comparison of two robustness frameworks for decision-making under uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    9. Nazarenko, Anastasia & Vishnevskiy, Konstantin & Meissner, Dirk & Daim, Tugrul, 2022. "Applying digital technologies in technology roadmapping to overcome individual biased assessments," Technovation, Elsevier, vol. 110(C).
    10. Christoffer Carstens & Karin Mossberg Sonnek & Riitta Räty & Per Wikman-Svahn & Annika Carlsson-Kanyama & Jonathan Metzger, 2019. "Insights from Testing a Modified Dynamic Adaptive Policy Pathways Approach for Spatial Planning at the Municipal Level," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    11. Zhang, Hao & Daim, Tugrul & Zhang, Yunqiu (Peggy), 2021. "Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    12. Noh, Heeyong & Kim, Kyuwoong & Song, Young-Keun & Lee, Sungjoo, 2021. "Opportunity-driven technology roadmapping: The case of 5G mobile services," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    13. Wil Thissen & Jan Kwakkel & Marjolein Mens & Jeroen Sluijs & Sara Stemberger & Arjan Wardekker & Diana Wildschut, 2017. "Dealing with Uncertainties in Fresh Water Supply: Experiences in the Netherlands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 703-725, January.
    14. Kwakkel, J.H. & Cunningham, S.C., 2016. "Improving scenario discovery by bagging random boxes," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 124-134.
    15. Saba Sareminia & Alireza Hasanzadeh & Shaaban Elahi & Gholamali Montazer, 2019. "Developing Technology Roadmapping Combinational Framework by Meta Synthesis Technique," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 1-36, April.
    16. Amankwah-Amoah, Joseph, 2016. "Emerging economies, emerging challenges: Mobilising and capturing value from big data," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 167-174.
    17. Vizinho, André & Avelar, David & Fonseca, Ana Lúcia & Carvalho, Silvia & Sucena-Paiva, Leonor & Pinho, Pedro & Nunes, Alice & Branquinho, Cristina & Vasconcelos, Ana Cátia & Santos, Filipe Duarte & Ro, 2021. "Framing the application of Adaptation Pathways for agroforestry in Mediterranean drylands," Land Use Policy, Elsevier, vol. 104(C).
    18. Erik Pruyt & Jan H. Kwakkel, 2014. "Radicalization under deep uncertainty: a multi-model exploration of activism, extremism, and terrorism," System Dynamics Review, System Dynamics Society, vol. 30(1-2), pages 1-28, January.
    19. Jan H. Kwakkel & Erik Pruyt, 2015. "Using System Dynamics for Grand Challenges: The ESDMA Approach," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(3), pages 358-375, May.
    20. Chi-Yo Huang & Jih-Jeng Huang & You-Ning Chang & Yen-Chu Lin, 2021. "A Fuzzy-MOP-Based Competence Set Expansion Method for Technology Roadmap Definitions," Mathematics, MDPI, vol. 9(2), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:5:d:10.1007_s11192-021-03945-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.