IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v120y2019i3d10.1007_s11192-019-03154-4.html
   My bibliography  Save this article

Qualifying threshold of “take-off” stage for successfully disseminated creative ideas

Author

Listed:
  • Guoqiang Liang

    (Dalian University of Technology
    Indiana University)

  • Haiyan Hou

    (Dalian University of Technology)

  • Xiaodan Lou

    (Beijing Normal University)

  • Zhigang Hu

    (Dalian University of Technology)

Abstract

The creative process is essentially Darwinian and only a small proportion of creative ideas are selected for further development. However, the threshold that identifies this small fraction of successfully disseminated creative ideas at their early stage has not been thoroughly analyzed through the lens of Rogers’s innovation diffusion theory. Here, we take highly cited (top 1%) research papers as an example of the most successfully disseminated creative ideas and explore the time it takes and citations it receives at their “take-off” stage, which play a crucial role in the dissemination of creativity. Results show the majority of highly cited papers will reach 10% and 25% of their total citations within 2 years and 4 years, respectively. Interestingly, our results also present a minimal number of articles that attract their first citation before publication. As for the discipline, number of references, and Price index, we find a significant difference exists: Clinical, Pre-Clinical & Health and Life Sciences are the first two disciplines to reach the C10% and C25% in a shorter amount of time. Highly cited papers with limited references usually take more time to reach 10% and 25% of their total citations. In addition, highly cited papers will attract citations rapidly when they cite more recent references. These results provide insights into the timespan and citations for a research paper to become highly cited at the “take-off” stage in its diffusion process, as well as the factors that may influence it.

Suggested Citation

  • Guoqiang Liang & Haiyan Hou & Xiaodan Lou & Zhigang Hu, 2019. "Qualifying threshold of “take-off” stage for successfully disseminated creative ideas," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1193-1208, September.
  • Handle: RePEc:spr:scient:v:120:y:2019:i:3:d:10.1007_s11192-019-03154-4
    DOI: 10.1007/s11192-019-03154-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03154-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03154-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natsuo Onodera & Fuyuki Yoshikane, 2015. "Factors affecting citation rates of research articles," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(4), pages 739-764, April.
    2. Beaudry, Catherine & Larivière, Vincent, 2016. "Which gender gap? Factors affecting researchers’ scientific impact in science and medicine," Research Policy, Elsevier, vol. 45(9), pages 1790-1817.
    3. Bornmann, Lutz, 2013. "The problem of citation impact assessments for recent publication years in institutional evaluations," Journal of Informetrics, Elsevier, vol. 7(3), pages 722-729.
    4. Rodrigo Costas & Thed N. Leeuwen & María Bordons, 2012. "Referencing patterns of individual researchers: Do top scientists rely on more extensive information sources?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2433-2450, December.
    5. Jiang Li & Fred Y. Ye, 2016. "Distinguishing sleeping beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 821-828, August.
    6. Anthony F. J. van Raan, 2004. "Sleeping Beauties in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(3), pages 467-472, March.
    7. Rodrigo Costas & Thed N. van Leeuwen & María Bordons, 2012. "Referencing patterns of individual researchers: Do top scientists rely on more extensive information sources?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(12), pages 2433-2450, December.
    8. Moed, H. F. & Burger, W. J. M. & Frankfort, J. G. & Van Raan, A. F. J., 1985. "The use of bibliometric data for the measurement of university research performance," Research Policy, Elsevier, vol. 14(3), pages 131-149, June.
    9. Dag W. Aksnes & Kristoffer Rorstad & Fredrik Piro & Gunnar Sivertsen, 2011. "Are female researchers less cited? A large-scale study of Norwegian scientists," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(4), pages 628-636, April.
    10. Fereshteh Didegah & Mike Thelwall, 2013. "Determinants of research citation impact in nanoscience and nanotechnology," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(5), pages 1055-1064, May.
    11. Per Ahlgren & Cristian Colliander & Peter Sjögårde, 2018. "Exploring the relation between referencing practices and citation impact: A large†scale study based on Web of Science data," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(5), pages 728-743, May.
    12. Yujia Zhai & Ying Ding & Fang Wang, 2018. "Measuring the diffusion of an innovation: A citation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(3), pages 368-379, March.
    13. Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
    14. Dag W. Aksnes & Kristoffer Rorstad & Fredrik Piro & Gunnar Sivertsen, 2011. "Are female researchers less cited? A large‐scale study of Norwegian scientists," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(4), pages 628-636, April.
    15. Chao Min & Ying Ding & Jiang Li & Yi Bu & Lei Pei & Jianjun Sun, 2018. "Innovation or imitation: The diffusion of citations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(10), pages 1271-1282, October.
    16. Xiangjie Kong & Huizhen Jiang & Wei Wang & Teshome Megersa Bekele & Zhenzhen Xu & Meng Wang, 2017. "Exploring dynamic research interest and academic influence for scientific collaborator recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 369-385, October.
    17. Wen Zhou & Jiayi Gu & Yifan Jia, 2018. "h-Index-based link prediction methods in citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 381-390, October.
    18. Didegah, Fereshteh & Thelwall, Mike, 2013. "Which factors help authors produce the highest impact research? Collaboration, journal and document properties," Journal of Informetrics, Elsevier, vol. 7(4), pages 861-873.
    19. Jian Wang, 2013. "Citation time window choice for research impact evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 851-872, March.
    20. Lee, You-Na & Walsh, John P. & Wang, Jian, 2015. "Creativity in scientific teams: Unpacking novelty and impact," Research Policy, Elsevier, vol. 44(3), pages 684-697.
    21. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    22. Vanclay, Jerome K., 2013. "Factors affecting citation rates in environmental science," Journal of Informetrics, Elsevier, vol. 7(2), pages 265-271.
    23. Hamid Bouabid, 2011. "Revisiting citation aging: a model for citation distribution and life-cycle prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 199-211, July.
    24. Lutz Bornmann & Adam Y. Ye & Fred Y. Ye, 2017. "Sequence analysis of annually normalized citation counts: an empirical analysis based on the characteristic scores and scales (CSS) method," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1665-1680, December.
    25. Fereshteh Didegah & Mike Thelwall, 2013. "Determinants of research citation impact in nanoscience and nanotechnology," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(5), pages 1055-1064, May.
    26. Lutz Bornmann & Hans-Dieter Daniel, 2006. "Selecting scientific excellence through committee peer review - A citation analysis of publications previously published to approval or rejection of post-doctoral research fellowship applicants," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 427-440, September.
    27. Nick Haslam & Lauren Ban & Leah Kaufmann & Stephen Loughnan & Kim Peters & Jennifer Whelan & Sam Wilson, 2008. "What makes an article influential? Predicting impact in social and personality psychology," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(1), pages 169-185, July.
    28. Roth, Camille & Wu, Jiang & Lozano, Sergi, 2012. "Assessing impact and quality from local dynamics of citation networks," Journal of Informetrics, Elsevier, vol. 6(1), pages 111-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoqiang Liang & Haiyan Hou & Qiao Chen & Zhigang Hu, 2020. "Diffusion and adoption: an explanatory model of “question mark” and “rising star” articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 219-232, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Guoqiang & Hou, Haiyan & Ding, Ying & Hu, Zhigang, 2020. "Knowledge recency to the birth of Nobel Prize-winning articles: Gender, career stage, and country," Journal of Informetrics, Elsevier, vol. 14(3).
    2. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    3. Stegehuis, Clara & Litvak, Nelly & Waltman, Ludo, 2015. "Predicting the long-term citation impact of recent publications," Journal of Informetrics, Elsevier, vol. 9(3), pages 642-657.
    4. Ruan, Xuanmin & Zhu, Yuanyang & Li, Jiang & Cheng, Ying, 2020. "Predicting the citation counts of individual papers via a BP neural network," Journal of Informetrics, Elsevier, vol. 14(3).
    5. Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
    6. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    7. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    8. Guoqiang Liang & Haiyan Hou & Qiao Chen & Zhigang Hu, 2020. "Diffusion and adoption: an explanatory model of “question mark” and “rising star” articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 219-232, July.
    9. Libo Sheng & Dongqing Lyu & Xuanmin Ruan & Hongquan Shen & Ying Cheng, 2023. "The association between prior knowledge and the disruption of an article," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4731-4751, August.
    10. Stefano Mammola & Diego Fontaneto & Alejandro Martínez & Filipe Chichorro, 2021. "Impact of the reference list features on the number of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 785-799, January.
    11. Lutz Bornmann & Adam Y. Ye & Fred Y. Ye, 2018. "Identifying “hot papers” and papers with “delayed recognition” in large-scale datasets by using dynamically normalized citation impact scores," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 655-674, August.
    12. Kaile Gong & Juan Xie & Ying Cheng & Vincent Larivière & Cassidy R. Sugimoto, 2019. "The citation advantage of foreign language references for Chinese social science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1439-1460, September.
    13. Juan Xie & Kaile Gong & Jiang Li & Qing Ke & Hyonchol Kang & Ying Cheng, 2019. "A probe into 66 factors which are possibly associated with the number of citations an article received," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1429-1454, June.
    14. Akella, Akhil Pandey & Alhoori, Hamed & Kondamudi, Pavan Ravikanth & Freeman, Cole & Zhou, Haiming, 2021. "Early indicators of scientific impact: Predicting citations with altmetrics," Journal of Informetrics, Elsevier, vol. 15(2).
    15. Peter Sjögårde & Fereshteh Didegah, 2022. "The association between topic growth and citation impact of research publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1903-1921, April.
    16. Basma Albanna & Julia Handl & Richard Heeks, 2021. "Publication outperformance among global South researchers: An analysis of individual-level and publication-level predictors of positive deviance," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8375-8431, October.
    17. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    18. Bornmann, Lutz, 2019. "Does the normalized citation impact of universities profit from certain properties of their published documents – such as the number of authors and the impact factor of the publishing journals? A mult," Journal of Informetrics, Elsevier, vol. 13(1), pages 170-184.
    19. Liu, Jialin & Chen, Hongkan & Liu, Zhibo & Bu, Yi & Gu, Weiye, 2022. "Non-linearity between referencing behavior and citation impact: A large-scale, discipline-level analysis," Journal of Informetrics, Elsevier, vol. 16(3).
    20. Li, Xin & Ma, Xiaodi & Feng, Ye, 2024. "Early identification of breakthrough research from sleeping beauties using machine learning," Journal of Informetrics, Elsevier, vol. 18(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:120:y:2019:i:3:d:10.1007_s11192-019-03154-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.