IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v86y2024i1d10.1007_s13571-024-00325-z.html
   My bibliography  Save this article

Mean and Variance for Count Regression Models Based on Reparameterized Distributions

Author

Listed:
  • Célestin C. Kokonendji

    (Université de Franche-Comté)

  • Rodrigo M. R. de Medeiros

    (Universidade de São Paulo)

  • Marcelo Bourguignon

    (Universidade Federal do Rio Grande do Norte)

Abstract

We introduce a new regression model for count data where the response variable is mainly in the class of inflated-parameter generalized power series (IGPS) distributions, which take automatically into account both dispersion and zero inflation phenomena. An original parameterization of these distributions is used, which is indexed by the mean and variance parameters, and not generally connected between them. An advantage of our approach is the straightforward interpretation of the regression coefficients in terms of the mean and variance comparing, for instance, to the popular generalized linear models. This attractive methodology is so simple and useful for many models. Some new mathematical and practical properties of the IGPS distributions are studied, including the quantile function, dispersion and zero-inflation indexes. Three basical IGPS models such for geometric, Bernoulli and Poisson are investigated in details. For the corresponding count regression models, the method of maximum likelihood is used for estimating the model parameters. Simulation studies are conducted to evaluate its finite sample performance. Finally, we highlight the ability of some reparameterized IGPS regression models to deal with count data which are overdispersed and zero-inflated; and then, comparing with usual models like zero inflated Poisson and negative binomial which are also reparameterized in terms of mean and variance.

Suggested Citation

  • Célestin C. Kokonendji & Rodrigo M. R. de Medeiros & Marcelo Bourguignon, 2024. "Mean and Variance for Count Regression Models Based on Reparameterized Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 280-310, May.
  • Handle: RePEc:spr:sankhb:v:86:y:2024:i:1:d:10.1007_s13571-024-00325-z
    DOI: 10.1007/s13571-024-00325-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-024-00325-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-024-00325-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sellers, Kimberly F. & Raim, Andrew, 2016. "A flexible zero-inflated model to address data dispersion," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 68-80.
    2. Carlo Ferreri, 2009. "On the Polya-Aeppli regression model," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 129-152.
    3. William H. Greene, 1994. "Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models," Working Papers 94-10, New York University, Leonard N. Stern School of Business, Department of Economics.
    4. Daniel B. Hall, 2000. "Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study," Biometrics, The International Biometric Society, vol. 56(4), pages 1030-1039, December.
    5. Marcelo Bourguignon & Diego I. Gallardo & Rodrigo M. R. Medeiros, 2022. "A simple and useful regression model for underdispersed count data based on Bernoulli–Poisson convolution," Statistical Papers, Springer, vol. 63(3), pages 821-848, June.
    6. C. Satheesh Kumar & Rakhi Ramachandran, 2020. "On some aspects of a zero-inflated overdispersed model and its applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(3), pages 506-523, February.
    7. Marcelo Bourguignon & Rodrigo M. R. Medeiros, 2022. "A simple and useful regression model for fitting count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 790-827, September.
    8. Puig, Pedro & Valero, Jordi, 2006. "Count Data Distributions: Some Characterizations With Applications," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 332-340, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    2. Niklas Elert, 2014. "What determines entry? Evidence from Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 55-92, August.
    3. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    4. Abbas Moghimbeigi & Mohammed Reza Eshraghian & Kazem Mohammad & Brian Mcardle, 2008. "Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1193-1202.
    5. Constantinescu Corina D. & Kozubowski Tomasz J. & Qian Haoyu H., 2019. "Probability of ruin in discrete insurance risk model with dependent Pareto claims," Dependence Modeling, De Gruyter, vol. 7(1), pages 215-233, January.
    6. Rahma Abid & Célestin C. Kokonendji & Afif Masmoudi, 2021. "On Poisson-exponential-Tweedie models for ultra-overdispersed count data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 1-23, March.
    7. Célestin C. Kokonendji & Sobom M. Somé & Youssef Esstafa & Marcelo Bourguignon, 2023. "On Underdispersed Count Kernels for Smoothing Probability Mass Functions," Stats, MDPI, vol. 6(4), pages 1-15, November.
    8. John Haslett & Andrew C. Parnell & John Hinde & Rafael de Andrade Moral, 2022. "Modelling Excess Zeros in Count Data: A New Perspective on Modelling Approaches," International Statistical Review, International Statistical Institute, vol. 90(2), pages 216-236, August.
    9. Arvind Kumar Yadav & Susanta Nag & Pabitra Kumar Jena & Kirtti Ranjan Paltasingh, 2021. "Determinants of Antenatal Care Utilisation in India: A Count Data Modelling Approach," Journal of Development Policy and Practice, , vol. 6(2), pages 210-230, July.
    10. Moghimbeigi, Abbas & Eshraghian, Mohammad Reza & Mohammad, Kazem & McArdle, Brian, 2009. "A score test for zero-inflation in multilevel count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1239-1248, February.
    11. Stefania Capecchi & Domenico Piccolo, 2017. "Dealing with heterogeneity in ordinal responses," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2375-2393, September.
    12. J. Christopher Westland, 2017. "An empirical investigation of analytical procedures using mixture distributions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(4), pages 111-124, October.
    13. William Greene, 2009. "Models for count data with endogenous participation," Empirical Economics, Springer, vol. 36(1), pages 133-173, February.
    14. Cornelia Lawson, 2013. "Academic Inventions Outside the University: Investigating Patent Ownership in the UK," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 385-398, July.
    15. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    16. Rui Baptista & Joana Mendonça, 2010. "Proximity to knowledge sources and the location of knowledge-based start-ups," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 45(1), pages 5-29, August.
    17. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    18. Christopher J. W. Zorn, 1998. "An Analytic and Empirical Examination of Zero-Inflated and Hurdle Poisson Specifications," Sociological Methods & Research, , vol. 26(3), pages 368-400, February.
    19. Xin Guo & Qiang Fu, 2024. "The Design and Optimality of Survey Counts: A Unified Framework Via the Fisher Information Maximizer," Sociological Methods & Research, , vol. 53(3), pages 1319-1349, August.
    20. Agrawal, Ajay & Cockburn, Iain, 2003. "The anchor tenant hypothesis: exploring the role of large, local, R&D-intensive firms in regional innovation systems," International Journal of Industrial Organization, Elsevier, vol. 21(9), pages 1227-1253, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:86:y:2024:i:1:d:10.1007_s13571-024-00325-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.