Multivariate Normal Inference based on Singly Imputed Synthetic Data under Plug-in Sampling
Author
Abstract
Suggested Citation
DOI: 10.1007/s13571-019-00215-9
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Satkartar K. Kinney & Jerome P. Reiter & Arnold P. Reznek & Javier Miranda & Ron S. Jarmin & John M. Abowd, 2011.
"Towards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database,"
International Statistical Review, International Statistical Institute, vol. 79(3), pages 362-384, December.
- Satkartar K. Kinney & Jerome P. Reiter & Arnold P. Reznek & Javier Miranda & Ron S. Jarmin & John M. Abowd, 2011. "Towards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database," Working Papers 11-04, Center for Economic Studies, U.S. Census Bureau.
- Klein, Martin & Sinha, Bimal, 2015. "Likelihood-based inference for singly and multiply imputed synthetic data under a normal model," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 168-175.
- Jerome P. Reiter, 2005. "Releasing multiply imputed, synthetic public use microdata: an illustration and empirical study," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 185-205, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Joshua Snoke & Gillian M. Raab & Beata Nowok & Chris Dibben & Aleksandra Slavkovic, 2018. "General and specific utility measures for synthetic data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 663-688, June.
- Chu, Amanda M.Y. & Ip, Chun Yin & Lam, Benson S.Y. & So, Mike K.P., 2022. "Vine copula statistical disclosure control for mixed-type data," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
- Biswajit Basak & Bimal Sinha, 2024. "Analysis of One-Way ANOVA Model using Synthetic Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 164-190, May.
- Joseph W. Sakshaug & Trivellore E. Raghunathan, 2014. "Generating synthetic microdata to estimate small area statistics in the American Community Survey," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 341-368, June.
- Hang J. Kim & Jerome P. Reiter & Alan F. Karr, 2018. "Simultaneous edit-imputation and disclosure limitation for business establishment data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 63-82, January.
- Klein Martin & Sinha Bimal, 2013. "Statistical Analysis of Noise-Multiplied Data Using Multiple Imputation," Journal of Official Statistics, Sciendo, vol. 29(3), pages 425-465, June.
- Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. RodrÃgue, 2023.
"An in-depth examination of requirements for disclosure risk assessment,"
Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(43), pages 2220558120-, October.
- Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. Rodr'igue, 2023. "An In-Depth Examination of Requirements for Disclosure Risk Assessment," Papers 2310.09398, arXiv.org.
- Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. Rodríguez, 2023. "An In-Depth Examination of Requirements for Disclosure Risk Assessment," Working Papers 23-49, Center for Economic Studies, U.S. Census Bureau.
- David R. Munro, 2021. "Consumer Behavior and Firm Volatility," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(4), pages 845-873, June.
- Woodcock, Simon D. & Benedetto, Gary, 2009.
"Distribution-preserving statistical disclosure limitation,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4228-4242, October.
- Woodcock, Simon & Benedetto, Gary, 2006. "Distribution-Preserving Statistical Disclosure Limitation," MPRA Paper 155, University Library of Munich, Germany.
- Simon D. Woodcock & Gary Benedetto, 2006. "Distribution Preserving Statistical Disclosure Limitation," Longitudinal Employer-Household Dynamics Technical Papers 2006-04, Center for Economic Studies, U.S. Census Bureau.
- Simon D. Woodcock & Gary Benedetto, 2007. "Distribution-Preserving Statistical Disclosure Limitation," Discussion Papers dp07-15, Department of Economics, Simon Fraser University.
- Dong Hua & Meeden Glen, 2016. "Constructing Synthetic Samples," Journal of Official Statistics, Sciendo, vol. 32(1), pages 113-127, March.
- Ori Heffetz & Katrina Ligett, 2014.
"Privacy and Data-Based Research,"
Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 75-98, Spring.
- Ori Heffetz & Katrina Ligett, 2013. "Privacy and Data-Based Research," NBER Working Papers 19433, National Bureau of Economic Research, Inc.
- Daniel H. Weinberg & John M. Abowd & Robert F. Belli & Noel Cressie & David C. Folch & Scott H. Holan & Margaret C. Levenstein & Kristen M. Olson & Jerome P. Reiter & Matthew D. Shapiro & Jolene Smyth, 2017. "Effects of a Government-Academic Partnership: Has the NSF-Census Bureau Research Network Helped Improve the U.S. Statistical System?," Working Papers 17-59r, Center for Economic Studies, U.S. Census Bureau.
- Andrés F. Barrientos & Alexander Bolton & Tom Balmat & Jerome P. Reiter & John M. de Figueiredo & Ashwin Machanavajjhala & Yan Chen & Charles Kneifel & Mark DeLong, 2017. "A Framework for Sharing Confidential Research Data, Applied to Investigating Differential Pay by Race in the U. S. Government," NBER Working Papers 23534, National Bureau of Economic Research, Inc.
- Gary Benedetto & Jordan C. Stanley & Evan Totty, 2018. "The Creation and Use of the SIPP Synthetic Beta v7.0," CES Technical Notes Series 18-03, Center for Economic Studies, U.S. Census Bureau.
- Yi Qian & Hui Xie, 2013. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," NBER Working Papers 19586, National Bureau of Economic Research, Inc.
- Sonya Vartivarian & John L. Czajka & Michael Weber, "undated". "Measuring Disclosure Risk and an Examination of the Possibilities of Using Synthetic Data in the Individual Income Tax Return Public Use File," Mathematica Policy Research Reports ab85aed60a3e429786cfcbfdc, Mathematica Policy Research.
- Hang J. Kim & Jörg Drechsler & Katherine J. Thompson, 2021. "Synthetic microdata for establishment surveys under informative sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 255-281, January.
- Joseph W. Sakshaug & Trivellore E. Raghunathan, 2014. "Generating synthetic data to produce public-use microdata for small geographic areas based on complex sample survey data with application to the National Health Interview Survey," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(10), pages 2103-2122, October.
- Nowok, Beata & Raab, Gillian M. & Dibben, Chris, 2016. "synthpop: Bespoke Creation of Synthetic Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i11).
- Harrison Quick & Scott H. Holan & Christopher K. Wikle, 2018. "Generating partially synthetic geocoded public use data with decreased disclosure risk by using differential smoothing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 649-661, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:83:y:2021:i:1:d:10.1007_s13571-019-00215-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.