Bayesian Variable Selection and Estimation Based on Global-Local Shrinkage Priors
Author
Abstract
Suggested Citation
DOI: 10.1007/s13171-017-0118-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
- Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
- Valen E. Johnson & David Rossell, 2012. "Bayesian Model Selection in High-Dimensional Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 649-660, June.
- Faming Liang & Qifan Song & Kai Yu, 2013. "Bayesian Subset Modeling for High-Dimensional Generalized Linear Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 589-606, June.
- Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
- P. Richard Hahn & Carlos M. Carvalho, 2015. "Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 435-448, March.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ghosh Malay, 2020. "Rejoinder," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 59-67, August.
- Kshitij Khare & Malay Ghosh, 2022. "MCMC Convergence for Global-Local Shrinkage Priors," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 211-234, September.
- Malay Ghosh, 2020. "Rejoinder," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 59-67, August.
- Zhang, Ruoyang & Ghosh, Malay, 2022. "Ultra high-dimensional multivariate posterior contraction rate under shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
- Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
- Mauro Bernardi & Daniele Bianchi & Nicolas Bianco, 2022. "Variational inference for large Bayesian vector autoregressions," Papers 2202.12644, arXiv.org, revised Jun 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qifan Song & Guang Cheng, 2020. "Bayesian Fusion Estimation via t Shrinkage," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-385, August.
- Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
- David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
- Li, Hanning & Pati, Debdeep, 2017. "Variable selection using shrinkage priors," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 107-119.
- Shi, Guiling & Lim, Chae Young & Maiti, Tapabrata, 2019. "Bayesian model selection for generalized linear models using non-local priors," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 285-296.
- Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
- Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023.
"Big data forecasting of South African inflation,"
Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
- Byron Botha & Kevin Kotze & Neil Rankin & Rulof P. Burger, 2022. "Big data forecasting of South African inflation," Working Papers 873, Economic Research Southern Africa.
- Byron Botha & Rulof Burger & Kevin Kotz & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," Working Papers 11022, South African Reserve Bank.
- Shi, Guiling & Lim, Chae Young & Maiti, Tapabrata, 2019. "Model selection using mass-nonlocal prior," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 36-44.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Tathagata Basu & Matthias C. M. Troffaes & Jochen Einbeck, 2023. "A Robust Bayesian Analysis of Variable Selection under Prior Ignorance," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1014-1057, February.
- Kshitij Khare & Malay Ghosh, 2022. "MCMC Convergence for Global-Local Shrinkage Priors," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 211-234, September.
- Qifan Song & Faming Liang, 2015. "High-Dimensional Variable Selection With Reciprocal L 1 -Regularization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1607-1620, December.
- Hauzenberger Niko & Huber Florian & Koop Gary, 2024.
"Dynamic Shrinkage Priors for Large Time-Varying Parameter Regressions Using Scalable Markov Chain Monte Carlo Methods,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 201-225, April.
- Niko Hauzenberger & Florian Huber & Gary Koop, "undated". "Dynamic Shrinkage Priors for Large Time-varying Parameter Regressions using Scalable Markov Chain Monte Carlo Methods," Working Papers 2305, University of Strathclyde Business School, Department of Economics.
- Niko Hauzenberger & Florian Huber & Gary Koop, 2020. "Dynamic Shrinkage Priors for Large Time-varying Parameter Regressions using Scalable Markov Chain Monte Carlo Methods," Papers 2005.03906, arXiv.org, revised May 2023.
- Banerjee, Sayantan, 2022. "Horseshoe shrinkage methods for Bayesian fusion estimation," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Matthew Gentzkow & Bryan T. Kelly & Matt Taddy, 2017. "Text as Data," NBER Working Papers 23276, National Bureau of Economic Research, Inc.
- Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
- Anindya Bhadra & Jyotishka Datta & Nicholas G. Polson & Brandon T. Willard, 2021. "The Horseshoe-Like Regularization for Feature Subset Selection," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 185-214, May.
- Kaito Shimamura & Shuichi Kawano, 2021. "Bayesian sparse convex clustering via global-local shrinkage priors," Computational Statistics, Springer, vol. 36(4), pages 2671-2699, December.
- Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
More about this item
Keywords
Half-thresholding; Optimal estimation rate; Variable selection consistency.;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:80:y:2018:i:2:d:10.1007_s13171-017-0118-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.