IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v100y2022i3d10.1007_s11134-022-09837-9.html
   My bibliography  Save this article

Spatial queues with a moving server

Author

Listed:
  • Peter Taylor

    (The University of Melbourne)

Abstract

No abstract is available for this item.

Suggested Citation

  • Peter Taylor, 2022. "Spatial queues with a moving server," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 261-263, April.
  • Handle: RePEc:spr:queues:v:100:y:2022:i:3:d:10.1007_s11134-022-09837-9
    DOI: 10.1007/s11134-022-09837-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-022-09837-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-022-09837-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy A. Carnes & Shane G. Henderson & David B. Shmoys & Mahvareh Ahghari & Russell D. MacDonald, 2013. "Mathematical Programming Guides Air-Ambulance Routing at Ornge," Interfaces, INFORMS, vol. 43(3), pages 232-239, May-June.
    2. Dirk P. Kroese & Volker Schmidt, 1996. "Light-Traffic Analysis for Queues with Spatially Distributed Arrivals," Mathematics of Operations Research, INFORMS, vol. 21(1), pages 135-157, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Detti, Paolo & Papalini, Francesco & Lara, Garazi Zabalo Manrique de, 2017. "A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare," Omega, Elsevier, vol. 70(C), pages 1-14.
    2. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.
    3. Lasse Leskelä & Falk Unger, 2012. "Stability of a spatial polling system with greedy myopic service," Annals of Operations Research, Springer, vol. 198(1), pages 165-183, September.
    4. Andrew S. Manikas & James R. Kroes & Thomas F. Gattiker, 2016. "Metro Meals on Wheels Treasure Valley Employs a Low-Cost Routing Tool to Improve Deliveries," Interfaces, INFORMS, vol. 46(2), pages 154-167, April.
    5. Masoud, Neda & Jayakrishnan, R., 2017. "A real-time algorithm to solve the peer-to-peer ride-matching problem in a flexible ridesharing system," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 218-236.
    6. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    7. Johnsen, Lennart C. & Meisel, Frank, 2022. "Interrelated trips in the rural dial-a-ride problem with autonomous vehicles," European Journal of Operational Research, Elsevier, vol. 303(1), pages 201-219.
    8. Ehsan Khodabandeh & Lawrence V. Snyder & John Dennis & Joshua Hammond & Cody Wanless, 2022. "C.H. Robinson Uses Heuristics to Solve Rich Vehicle Routing Problems," Interfaces, INFORMS, vol. 52(2), pages 173-188, March.
    9. Veeraruna Kavitha & Eitan Altman, 2012. "Continuous polling models and application to ferry assisted WLAN," Annals of Operations Research, Springer, vol. 198(1), pages 185-218, September.
    10. Masmoudi, Mohamed Amine & Hosny, Manar & Braekers, Kris & Dammak, Abdelaziz, 2016. "Three effective metaheuristics to solve the multi-depot multi-trip heterogeneous dial-a-ride problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 60-80.
    11. Dimitris Bertsimas & Allison Chang & Velibor V. Mišić & Nishanth Mundru, 2019. "The Airlift Planning Problem," Transportation Science, INFORMS, vol. 53(3), pages 773-773, May.
    12. Braekers, Kris & Caris, An & Janssens, Gerrit K., 2014. "Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 166-186.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:100:y:2022:i:3:d:10.1007_s11134-022-09837-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.