IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v59y2025i2d10.1007_s11135-024-02028-z.html
   My bibliography  Save this article

Comparison of imputation methods for univariate categorical longitudinal data

Author

Listed:
  • Kevin Emery

    (Swiss Centre of Expertise in Life Course Research LIVES
    University of Geneva)

  • Matthias Studer

    (Swiss Centre of Expertise in Life Course Research LIVES
    University of Geneva)

  • André Berchtold

    (University of Lausanne)

Abstract

The life course paradigm emphasizes the need to study not only the situation at a given point in time, but also its evolution over the life course in the medium and long term. These trajectories are often represented by categorical data. This article aims to provide a comprehensive review of the multiple imputation methods proposed so far in the context of univariate categorical data and to assess their practical relevance through a simulation study based on real data. The primary goal is to provide clear methodological guidelines and improve the handling of missing data in life course research. In parallel, we develop the MICT-timing algorithm, which is an extension of the MICT algorithm. This innovative multiple imputation method improves the quality of imputation in trajectories subject to time-varying transition rates, a situation often encountered in life course data.

Suggested Citation

  • Kevin Emery & Matthias Studer & André Berchtold, 2025. "Comparison of imputation methods for univariate categorical longitudinal data," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(2), pages 1767-1791, April.
  • Handle: RePEc:spr:qualqt:v:59:y:2025:i:2:d:10.1007_s11135-024-02028-z
    DOI: 10.1007/s11135-024-02028-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-024-02028-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-024-02028-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:59:y:2025:i:2:d:10.1007_s11135-024-02028-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.