IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v58y2024i3d10.1007_s11135-023-01784-8.html
   My bibliography  Save this article

A new matrix-based formulation for computing the variance components F-test in linear models with crossed random effects

Author

Listed:
  • Yahia S. El-Horbaty

    (Helwan University)

Abstract

This paper considers the problem of testing statistical hypotheses about the variance components under linear models with crossed random effects. The objective here is two-fold. First, new derivations of exactly distributed F test statistics are presented. Second, an alternative Monte Carlo permutation procedure is proposed to approximate the distribution of the F statistics, which shows its usefulness when the error components distributions depart from normality. Transformations that uniquely decompose the covariance structure of the response vector and do not sacrifice any part of the data, as existing methods do, are presented in matrix form. The suggested transformations highlight the exchangeable covariance structure of the model under the null hypotheses of interest and thus motivate the use of the permutation procedure. Comments on the performance of the proposed procedure compared to existing tests as well as using a real data example are provided.

Suggested Citation

  • Yahia S. El-Horbaty, 2024. "A new matrix-based formulation for computing the variance components F-test in linear models with crossed random effects," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(3), pages 3001-3020, June.
  • Handle: RePEc:spr:qualqt:v:58:y:2024:i:3:d:10.1007_s11135-023-01784-8
    DOI: 10.1007/s11135-023-01784-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-023-01784-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-023-01784-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Long Qu & Tobias Guennel & Scott L. Marshall, 2013. "Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 883-892, December.
    2. Garrett M. Fitzmaurice & Stuart R. Lipsitz & Joseph G. Ibrahim, 2007. "A Note on Permutation Tests for Variance Components in Multilevel Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 63(3), pages 942-946, September.
    3. Fuller, Wayne A. & Battese, George E., 1974. "Estimation of linear models with crossed-error structure," Journal of Econometrics, Elsevier, vol. 2(1), pages 67-78, May.
    4. Halekoh, Ulrich & Højsgaard, Søren, 2014. "A Kenward-Roger Approximation and Parametric Bootstrap Methods for Tests in Linear Mixed Models The R Package pbkrtest," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i09).
    5. Oliver E. Lee & Thomas M. Braun, 2012. "Permutation Tests for Random Effects in Linear Mixed Models," Biometrics, The International Biometric Society, vol. 68(2), pages 486-493, June.
    6. Ciprian M. Crainiceanu & David Ruppert, 2004. "Likelihood ratio tests in linear mixed models with one variance component," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 165-185, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yahia S. El-Horbaty & Eman M. Hanafy, 2024. "A Monte Carlo permutation procedure for testing variance components using robust estimation methods," Statistical Papers, Springer, vol. 65(1), pages 335-356, February.
    2. Baey, Charlotte & Cournède, Paul-Henry & Kuhn, Estelle, 2019. "Asymptotic distribution of likelihood ratio test statistics for variance components in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 107-122.
    3. Oliver E. Lee & Thomas M. Braun, 2012. "Permutation Tests for Random Effects in Linear Mixed Models," Biometrics, The International Biometric Society, vol. 68(2), pages 486-493, June.
    4. Zhenzhen Zhang & Thomas M. Braun & Karen E. Peterson & Howard Hu & Martha M. Téllez-Rojo & Brisa N. Sánchez, 2018. "Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 634-650, December.
    5. Sanjoy Sinha & Abdus Sattar, 2015. "Inference in semi-parametric spline mixed models for longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 377-395, December.
    6. Yahia S. El-Horbaty, 2024. "A Monte Carlo permutation procedure for testing variance components in generalized linear regression models," Computational Statistics, Springer, vol. 39(5), pages 2605-2621, July.
    7. Suel, Esra & Polak, John W., 2017. "Development of joint models for channel, store, and travel mode choice: Grocery shopping in London," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 147-162.
    8. Imori, Shinpei & Rosen, Dietrich von, 2015. "Covariance components selection in high-dimensional growth curve model with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 86-94.
    9. Pini, Alessia & Sørensen, Helle & Tolver, Anders & Vantini, Simone, 2023. "Local inference for functional linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    10. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    11. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    12. Martin, Manon & Govaerts, Bernadette, 2019. "LiMM-PCA : combining ASCA+ and linear mixed models to analyse high dimensional designed data," LIDAM Discussion Papers ISBA 2019021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Hasan Önder, 2017. "A Review on the Permutation Tests," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 3(3), pages 68-70, October.
    14. Miao-Yu Tsai & Chuhsing Hsiao, 2008. "Computation of reference Bayesian inference for variance components in longitudinal studies," Computational Statistics, Springer, vol. 23(4), pages 587-604, October.
    15. Yeojin Chung & Sophia Rabe-Hesketh & Vincent Dorie & Andrew Gelman & Jingchen Liu, 2013. "A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 685-709, October.
    16. Lucy F. Ackert & Bryan K. Church & Richard Deaves, 2002. "Bubbles in experimental asset markets: Irrational exuberance no more," FRB Atlanta Working Paper 2002-24, Federal Reserve Bank of Atlanta.
    17. Lucy F. Ackert & Narat Charupat & Bryan K. Church & Richard Deaves, 2006. "Margin, Short Selling, and Lotteries in Experimental Asset Markets," Southern Economic Journal, John Wiley & Sons, vol. 73(2), pages 419-436, October.
    18. Hamid Beladi & Nicholas S. P. Tay & Reza Oladi, 2011. "On Competition for Listings," Working Papers 0003, College of Business, University of Texas at San Antonio.
    19. Benjamin R. Saville & Amy H. Herring, 2009. "Testing Random Effects in the Linear Mixed Model Using Approximate Bayes Factors," Biometrics, The International Biometric Society, vol. 65(2), pages 369-376, June.
    20. Paul E. Rose & James E. Brereton & Lewis J. Rowden & Ricardo Lemos Figueiredo & Lisa M. Riley, 2019. "What’s new from the zoo? An analysis of ten years of zoo-themed research output," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:58:y:2024:i:3:d:10.1007_s11135-023-01784-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.