IDEAS home Printed from
   My bibliography  Save this article

Variable-Length Stopping Rules for Multidimensional Computerized Adaptive Testing


  • Chun Wang

    () (University of Washington)

  • David J. Weiss

    (University of Minnesota)

  • Zhuoran Shang

    (University of Minnesota)


Abstract In computerized adaptive testing (CAT), a variable-length stopping rule refers to ending item administration after a pre-specified measurement precision standard has been satisfied. The goal is to provide equal measurement precision for all examinees regardless of their true latent trait level. Several stopping rules have been proposed in unidimensional CAT, such as the minimum information rule or the maximum standard error rule. These rules have also been extended to multidimensional CAT and cognitive diagnostic CAT, and they all share the same idea of monitoring measurement error. Recently, Babcock and Weiss (J Comput Adapt Test 2012. proposed an “absolute change in theta” (CT) rule, which is useful when an item bank is exhaustive of good items for one or more ranges of the trait continuum. Choi, Grady and Dodd (Educ Psychol Meas 70:1–17, 2010) also argued that a CAT should stop when the standard error does not change, implying that the item bank is likely exhausted. Although these stopping rules have been evaluated and compared in different simulation studies, the relationships among the various rules remain unclear, and therefore there lacks a clear guideline regarding when to use which rule. This paper presents analytic results to show the connections among various stopping rules within both unidimensional and multidimensional CAT. In particular, it is argued that the CT-rule alone can be unstable and it can end the test prematurely. However, the CT-rule can be a useful secondary rule to monitor the point of diminished returns. To further provide empirical evidence, three simulation studies are reported using both the 2PL model and the multidimensional graded response model.

Suggested Citation

  • Chun Wang & David J. Weiss & Zhuoran Shang, 2019. "Variable-Length Stopping Rules for Multidimensional Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 749-771, September.
  • Handle: RePEc:spr:psycho:v:84:y:2019:i:3:d:10.1007_s11336-018-9644-7
    DOI: 10.1007/s11336-018-9644-7

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:84:y:2019:i:3:d:10.1007_s11336-018-9644-7. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Mallaigh Nolan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.