IDEAS home Printed from https://ideas.repec.org/a/spr/pardea/v6y2025i1d10.1007_s42985-025-00313-6.html
   My bibliography  Save this article

Vlasov equations on directed hypergraph measures

Author

Listed:
  • Christian Kuehn

    (Technical University of Munich
    Technical University of Munich)

  • Chuang Xu

    (University of Hawai’i at Mānoa)

Abstract

In this paper we propose a framework to investigate the mean field limit (MFL) of interacting particle systems on directed hypergraphs. We provide a non-trivial measure-theoretic viewpoint and make extensions of directed hypergraphs as directed hypergraph measures (DHGMs), which are measure-valued functions on a compact metric space. These DHGMs can be regarded as hypergraph limits which include limits of a sequence of hypergraphs that are sparse, dense, or of intermediate densities. Our main results show that the Vlasov equation on DHGMs are well-posed and its solution can be approximated by empirical distributions of large networks of higher-order interactions. The results are applied to a Kuramoto network in physics, an epidemic network, and an ecological network, all of which include higher-order interactions. To prove the main results on the approximation and well-posedness of the Vlasov equation on DHGMs, we robustly generalize the method of [Kuehn, Xu. Vlasov equations on digraph measures, JDE, 339 (2022), 261–349] to higher-dimensions.

Suggested Citation

  • Christian Kuehn & Chuang Xu, 2025. "Vlasov equations on directed hypergraph measures," Partial Differential Equations and Applications, Springer, vol. 6(1), pages 1-49, March.
  • Handle: RePEc:spr:pardea:v:6:y:2025:i:1:d:10.1007_s42985-025-00313-6
    DOI: 10.1007/s42985-025-00313-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42985-025-00313-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42985-025-00313-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keliger, Dániel & Horváth, Illés, 2023. "Accuracy criterion for mean field approximations of Markov processes on hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    2. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    3. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    4. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    5. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    6. Thomas Moore & Patrick Finley & Nancy Brodsky & Theresa Brown & Benjamin Apelberg & Bridget Ambrose & Robert Glass, 2015. "Modeling Education and Advertising with Opinion Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-7.
    7. George Butler & Gabriella Pigozzi & Juliette Rouchier, 2019. "Mixing Dyadic and Deliberative Opinion Dynamics in an Agent-Based Model of Group Decision-Making," Complexity, Hindawi, vol. 2019, pages 1-31, August.
    8. Leonie Geyer & Patrick Mellacher, 2024. "Simulating Party Competition in Dynamic Voter Distributions," Graz Economics Papers 2024-19, University of Graz, Department of Economics.
    9. Huang, Changwei & Hou, Yongzhao & Han, Wenchen, 2023. "Coevolution of consensus and cooperation in evolutionary Hegselmann–Krause dilemma with the cooperation cost," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    10. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    11. Michel Grabisch & Antoine Mandel & Agnieszka Rusinowska, 2023. "On the Design of Public Debate in Social Networks," Operations Research, INFORMS, vol. 71(2), pages 626-648, March.
    12. Kułakowski, Krzysztof, 2009. "Opinion polarization in the Receipt–Accept–Sample model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 469-476.
    13. Guillaume Deffuant & Ilaria Bertazzi & Sylvie Huet, 2018. "The Dark Side Of Gossips: Hints From A Simple Opinion Dynamics Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-20, September.
    14. Schweitzer, Frank, 2021. "Social percolation revisited: From 2d lattices to adaptive networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    15. Toth, Gabor & Galam, Serge, 2022. "Deviations from the majority: A local flip model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    16. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    17. Yao Li & Wenhao Lin & Yucheng Dong & Cong-Cong Li & Francisco Herrera, 2024. "Consensus Reaching with Dynamic Trust Relationships and Cost-Learning in Group Decision Making," Group Decision and Negotiation, Springer, vol. 33(5), pages 1269-1300, October.
    18. Diao, Su-Meng & Liu, Yun & Zeng, Qing-An & Luo, Gui-Xun & Xiong, Fei, 2014. "A novel opinion dynamics model based on expanded observation ranges and individuals’ social influences in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 220-228.
    19. Lipiecki, Arkadiusz & Sznajd-Weron, Katarzyna, 2022. "Polarization in the three-state q-voter model with anticonformity and bounded confidence," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    20. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:6:y:2025:i:1:d:10.1007_s42985-025-00313-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.