IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v38y2016i4d10.1007_s00291-016-0434-2.html
   My bibliography  Save this article

A multi-objective military system of systems architecting problem with inflexible and flexible systems: formulation and solution methods

Author

Listed:
  • Dinçer Konur

    (Missouri University of Science and Technology)

  • Hadi Farhangi

    (Missouri University of Science and Technology)

  • Cihan H. Dagli

    (Missouri University of Science and Technology)

Abstract

System of systems (SoS) architecting is the process of bringing together and connecting a set of systems so that the collection of the systems, i.e., the SoS is equipped with a set of required capabilities. A system is defined as inflexible in case it contributes to the SoS with all of the capabilities it can provide. On the other hand, a flexible system can collaborate with the SoS architect in the capabilities it will provide. In this study, we formulate and analyze a SoS architecting problem representing a military mission planning problem with inflexible and flexible systems as a multi-objective mixed-integer-linear optimization model. We discuss applications of an exact and an evolutionary method for generating and approximating the Pareto front of this model, respectively. Furthermore, we propose a decomposition approach, which decomposes the problem into smaller sub-problems by adding equality constraints, to improve both the exact and the evolutionary methods. Results from a set of numerical studies suggest that the proposed decomposition approach reduces the computational time for generating the exact Pareto front as well as it reduces the computational time for approximating the Pareto front while not resulting in a worse approximated Pareto front. The proposed decomposition approach can be easily used for different problems with different exact and heuristic methods and thus is a promising tool to improve the computational time of solving multi-objective combinatorial problems. Furthermore, a sample scenario is presented to illustrate the effects of system flexibility.

Suggested Citation

  • Dinçer Konur & Hadi Farhangi & Cihan H. Dagli, 2016. "A multi-objective military system of systems architecting problem with inflexible and flexible systems: formulation and solution methods," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 967-1006, October.
  • Handle: RePEc:spr:orspec:v:38:y:2016:i:4:d:10.1007_s00291-016-0434-2
    DOI: 10.1007/s00291-016-0434-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-016-0434-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-016-0434-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juttner, Alpar & Orban, Andras & Fiala, Zoltan, 2005. "Two new algorithms for UMTS access network topology design," European Journal of Operational Research, Elsevier, vol. 164(2), pages 456-474, July.
    2. André Girard & Brunilde Sansò & Linda Dadjo, 2001. "A Tabu Search Algorithm for Access Network Design," Annals of Operations Research, Springer, vol. 106(1), pages 229-262, September.
    3. Laumanns, Marco & Thiele, Lothar & Zitzler, Eckart, 2006. "An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method," European Journal of Operational Research, Elsevier, vol. 169(3), pages 932-942, March.
    4. Bérubé, Jean-François & Gendreau, Michel & Potvin, Jean-Yves, 2009. "An exact [epsilon]-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits," European Journal of Operational Research, Elsevier, vol. 194(1), pages 39-50, April.
    5. Kerstin Dächert & Kathrin Klamroth, 2015. "A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems," Journal of Global Optimization, Springer, vol. 61(4), pages 643-676, April.
    6. Alves, Maria Joao & Climaco, Joao, 2000. "An interactive reference point approach for multiobjective mixed-integer programming using branch-and-bound," European Journal of Operational Research, Elsevier, vol. 124(3), pages 478-494, August.
    7. Andrzej Jaszkiewicz, 2004. "A Comparative Study of Multiple-Objective Metaheuristics on the Bi-Objective Set Covering Problem and the Pareto Memetic Algorithm," Annals of Operations Research, Springer, vol. 131(1), pages 135-158, October.
    8. Dhaenens, C. & Lemesre, J. & Talbi, E.G., 2010. "K-PPM: A new exact method to solve multi-objective combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 200(1), pages 45-53, January.
    9. Sylva, John & Crema, Alejandro, 2007. "A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1011-1027, August.
    10. Nicolas Jozefowiez & Gilbert Laporte & Frédéric Semet, 2012. "A Generic Branch-and-Cut Algorithm for Multiobjective Optimization Problems: Application to the Multilabel Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 554-564, November.
    11. Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
    12. Mavrotas, G. & Diakoulaki, D., 1998. "A branch and bound algorithm for mixed zero-one multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 107(3), pages 530-541, June.
    13. Özlen, Melih & Azizoglu, Meral, 2009. "Multi-objective integer programming: A general approach for generating all non-dominated solutions," European Journal of Operational Research, Elsevier, vol. 199(1), pages 25-35, November.
    14. Robert K. Garrett & Steve Anderson & Neil T. Baron & James D. Moreland, 2011. "Managing the interstitials, a System of Systems framework suited for the Ballistic Missile Defense System," Systems Engineering, John Wiley & Sons, vol. 14(1), pages 87-109, March.
    15. Kirlik, Gokhan & Sayın, Serpil, 2014. "A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 479-488.
    16. Banu Lokman & Murat Köksalan, 2013. "Finding all nondominated points of multi-objective integer programs," Journal of Global Optimization, Springer, vol. 57(2), pages 347-365, October.
    17. Klein, Dieter & Hannan, Edward, 1982. "An algorithm for the multiple objective integer linear programming problem," European Journal of Operational Research, Elsevier, vol. 9(4), pages 378-385, April.
    18. Attila A. Kovacs & Bruce L. Golden & Richard F. Hartl & Sophie N. Parragh, 2015. "The Generalized Consistent Vehicle Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 796-816, November.
    19. Melissa Gardenghi & Trinidad Gómez & Francisca Miguel & Margaret M. Wiecek, 2011. "Algebra of Efficient Sets for Multiobjective Complex Systems," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 385-410, May.
    20. Konur, Dinçer & Golias, Mihalis M., 2013. "Cost-stable truck scheduling at a cross-dock facility with unknown truck arrivals: A meta-heuristic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 71-91.
    21. Navindran Davendralingam & Daniel. A. DeLaurentis, 2015. "A Robust Portfolio Optimization Approach to System of System Architectures," Systems Engineering, John Wiley & Sons, vol. 18(3), pages 269-283, May.
    22. Dan DeLaurentis & Robert K. “CAB” Callaway, 2004. "A System‐of‐Systems Perspective for Public Policy Decisions," Review of Policy Research, Policy Studies Organization, vol. 21(6), pages 829-837, November.
    23. Sylva, John & Crema, Alejandro, 2004. "A method for finding the set of non-dominated vectors for multiple objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 158(1), pages 46-55, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konur, Dinçer & Campbell, James F. & Monfared, Sepideh A., 2017. "Economic and environmental considerations in a stochastic inventory control model with order splitting under different delivery schedules among suppliers," Omega, Elsevier, vol. 71(C), pages 46-65.
    2. José Antonio Cuenca Mira & Francisca Miguel García, 2017. "On the Parametric Decomposition Theorem in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 945-953, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
    2. Özarık, Sami Serkan & Lokman, Banu & Köksalan, Murat, 2020. "Distribution based representative sets for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 284(2), pages 632-643.
    3. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    4. Ceyhan, Gökhan & Köksalan, Murat & Lokman, Banu, 2019. "Finding a representative nondominated set for multi-objective mixed integer programs," European Journal of Operational Research, Elsevier, vol. 272(1), pages 61-77.
    5. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    6. Kerstin Dächert & Kathrin Klamroth, 2015. "A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems," Journal of Global Optimization, Springer, vol. 61(4), pages 643-676, April.
    7. Tolga Bektaş, 2018. "Disjunctive Programming for Multiobjective Discrete Optimisation," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 625-633, November.
    8. Natashia Boland & Hadi Charkhgard & Martin Savelsbergh, 2015. "A Criterion Space Search Algorithm for Biobjective Integer Programming: The Balanced Box Method," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 735-754, November.
    9. Bashir Bashir & Özlem Karsu, 2022. "Solution approaches for equitable multiobjective integer programming problems," Annals of Operations Research, Springer, vol. 311(2), pages 967-995, April.
    10. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    11. Konur, Dinçer & Campbell, James F. & Monfared, Sepideh A., 2017. "Economic and environmental considerations in a stochastic inventory control model with order splitting under different delivery schedules among suppliers," Omega, Elsevier, vol. 71(C), pages 46-65.
    12. Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2015. "On the representation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 245(3), pages 767-778.
    13. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    14. Dächert, Kerstin & Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2017. "Efficient computation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 841-855.
    15. Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
    16. William Pettersson & Melih Ozlen, 2020. "Multiobjective Integer Programming: Synergistic Parallel Approaches," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 461-472, April.
    17. Burdett, Robert & Kozan, Erhan, 2016. "A multi-criteria approach for hospital capacity analysis," European Journal of Operational Research, Elsevier, vol. 255(2), pages 505-521.
    18. S. Razavyan, 2016. "A Method for Generating a Well-Distributed Pareto Set in Multiple Objective Mixed Integer Linear Programs Based on the Decision Maker’s Initial Aspiration Level," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-23, August.
    19. Kirlik, Gokhan & Sayın, Serpil, 2014. "A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 479-488.
    20. Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:38:y:2016:i:4:d:10.1007_s00291-016-0434-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.