A method for finding the set of non-dominated vectors for multiple objective integer linear programs
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chalmet, L. G. & Lemonidis, L. & Elzinga, D. J., 1986. "An algorithm for the bi-criterion integer programming problem," European Journal of Operational Research, Elsevier, vol. 25(2), pages 292-300, May.
- Deckro, R. F. & Winkofsky, E. P., 1983. "Solving zero-one multiple objective programs through implicit enumeration," European Journal of Operational Research, Elsevier, vol. 12(4), pages 362-374, April.
- Liu, Fuh-Hwa Franklin & Huang, Chueng-Chiu & Yen, Yu-Lee, 2000. "Using DEA to obtain efficient solutions for multi-objective 0-1 linear programs," European Journal of Operational Research, Elsevier, vol. 126(1), pages 51-68, October.
- Crema, Alejandro, 1997. "A contraction algorithm for the multiparametric integer linear programming problem," European Journal of Operational Research, Elsevier, vol. 101(1), pages 130-139, August.
- Schweigert, D. & Neumayer, P., 1997. "A reduction algorithm for integer multiple objective linear programs," European Journal of Operational Research, Elsevier, vol. 99(2), pages 459-462, June.
- Gülseren Kiziltan & Erkut Yucaou{g}lu, 1983. "An Algorithm for Multiobjective Zero-One Linear Programming," Management Science, INFORMS, vol. 29(12), pages 1444-1453, December.
- Rasmussen, L. M., 1986. "Zero--one programming with multiple criteria," European Journal of Operational Research, Elsevier, vol. 26(1), pages 83-95, July.
- Soland, Richard M., 1983. "The design of multiactivity multifacility systems," European Journal of Operational Research, Elsevier, vol. 12(1), pages 95-104, January.
- Klein, Dieter & Hannan, Edward, 1982. "An algorithm for the multiple objective integer linear programming problem," European Journal of Operational Research, Elsevier, vol. 9(4), pages 378-385, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mavrotas, G. & Diakoulaki, D., 1998. "A branch and bound algorithm for mixed zero-one multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 107(3), pages 530-541, June.
- Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
- Zhang, Cai Wen & Ong, Hoon Liong, 2004. "Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic," European Journal of Operational Research, Elsevier, vol. 159(3), pages 545-557, December.
- Serpil Say{i}n & Panos Kouvelis, 2005. "The Multiobjective Discrete Optimization Problem: A Weighted Min-Max Two-Stage Optimization Approach and a Bicriteria Algorithm," Management Science, INFORMS, vol. 51(10), pages 1572-1581, October.
- Karaivanova, Jasmina & Korhonen, Pekka & Narula, Subhash & Wallenius, Jyrki & Vassilev, Vassil, 1995. "A reference direction approach to multiple objective integer linear programming," European Journal of Operational Research, Elsevier, vol. 81(1), pages 176-187, February.
- Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
- Panos Kouvelis & Serpil Sayın, 2006. "Algorithm robust for the bicriteria discrete optimization problem," Annals of Operations Research, Springer, vol. 147(1), pages 71-85, October.
- Skriver, Anders J. V. & Andersen, Kim Allan & Holmberg, Kaj, 2004. "Bicriteria network location (BNL) problems with criteria dependent lengths and minisum objectives," European Journal of Operational Research, Elsevier, vol. 156(3), pages 541-549, August.
- Sune Lauth Gadegaard & Lars Relund Nielsen & Matthias Ehrgott, 2019. "Bi-objective Branch-and-Cut Algorithms Based on LP Relaxation and Bound Sets," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 790-804, October.
- Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
- Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
- Sylva, John & Crema, Alejandro, 2007. "A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1011-1027, August.
- S. Razavyan, 2016. "A Method for Generating a Well-Distributed Pareto Set in Multiple Objective Mixed Integer Linear Programs Based on the Decision Maker’s Initial Aspiration Level," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-23, August.
- Farahani, Reza Zanjirani & Asgari, Nasrin, 2007. "Combination of MCDM and covering techniques in a hierarchical model for facility location: A case study," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1839-1858, February.
- Thomas Stidsen & Kim Allan Andersen & Bernd Dammann, 2014. "A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs," Management Science, INFORMS, vol. 60(4), pages 1009-1032, April.
- Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.
- Kerstin Dächert & Kathrin Klamroth, 2015. "A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems," Journal of Global Optimization, Springer, vol. 61(4), pages 643-676, April.
- Dächert, Kerstin & Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2017. "Efficient computation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 841-855.
- Ted Ralphs & Matthew Saltzman & Margaret Wiecek, 2006. "An improved algorithm for solving biobjective integer programs," Annals of Operations Research, Springer, vol. 147(1), pages 43-70, October.
- Fernandez, Elena & Puerto, Justo, 2003. "Multiobjective solution of the uncapacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 145(3), pages 509-529, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:158:y:2004:i:1:p:46-55. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.