IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v147y2006i1p71-8510.1007-s10479-006-0062-3.html
   My bibliography  Save this article

Algorithm robust for the bicriteria discrete optimization problem

Author

Listed:
  • Panos Kouvelis
  • Serpil Sayın

Abstract

We apply Algorithm Robust to various problems in multiple objective discrete optimization. Algorithm Robust is a general procedure that is designed to solve bicriteria optimization problems. The algorithm performs a weight space search in which the weights are utilized in min-max type subproblems. In this paper, we experiment with Algorithm Robust on the bicriteria knapsack problem, the bicriteria assignment problem, and the bicriteria minimum cost network flow problem. We look at a heuristic variation that is based on controlling the weight space search and has an indirect control on the sample of efficient solutions generated. We then study another heuristic variation which generates samples of the efficient set with quality guarantees. We report results of computational experiments. Copyright Springer Science + Business Media, LLC 2006

Suggested Citation

  • Panos Kouvelis & Serpil Sayın, 2006. "Algorithm robust for the bicriteria discrete optimization problem," Annals of Operations Research, Springer, vol. 147(1), pages 71-85, October.
  • Handle: RePEc:spr:annopr:v:147:y:2006:i:1:p:71-85:10.1007/s10479-006-0062-3
    DOI: 10.1007/s10479-006-0062-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-0062-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-0062-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chalmet, L. G. & Lemonidis, L. & Elzinga, D. J., 1986. "An algorithm for the bi-criterion integer programming problem," European Journal of Operational Research, Elsevier, vol. 25(2), pages 292-300, May.
    2. Serpil Say{i}n & Panos Kouvelis, 2005. "The Multiobjective Discrete Optimization Problem: A Weighted Min-Max Two-Stage Optimization Approach and a Bicriteria Algorithm," Management Science, INFORMS, vol. 51(10), pages 1572-1581, October.
    3. Gülseren Kiziltan & Erkut Yucaou{g}lu, 1983. "An Algorithm for Multiobjective Zero-One Linear Programming," Management Science, INFORMS, vol. 29(12), pages 1444-1453, December.
    4. Ehrgott, Matthias & Skriver, Anders J. V., 2003. "Solving biobjective combinatorial max-ordering problems by ranking methods and a two-phases approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 657-664, June.
    5. Klein, Dieter & Hannan, Edward, 1982. "An algorithm for the multiple objective integer linear programming problem," European Journal of Operational Research, Elsevier, vol. 9(4), pages 378-385, April.
    6. Lee, Haijune & Simin Pulat, P., 1993. "Bicriteria network flow problems: Integer case," European Journal of Operational Research, Elsevier, vol. 66(1), pages 148-157, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jyrki Wallenius & James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Stanley Zionts & Kalyanmoy Deb, 2008. "Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead," Management Science, INFORMS, vol. 54(7), pages 1336-1349, July.
    2. Hombach, Laura Elisabeth & Büsing, Christina & Walther, Grit, 2018. "Robust and sustainable supply chains under market uncertainties and different risk attitudes – A case study of the German biodiesel market," European Journal of Operational Research, Elsevier, vol. 269(1), pages 302-312.
    3. Klamroth, Kathrin & Köbis, Elisabeth & Schöbel, Anita & Tammer, Christiane, 2017. "A unified approach to uncertain optimization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 403-420.
    4. Alexander Engau, 2017. "Proper Efficiency and Tradeoffs in Multiple Criteria and Stochastic Optimization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 119-134, January.
    5. Bérubé, Jean-François & Gendreau, Michel & Potvin, Jean-Yves, 2009. "An exact [epsilon]-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits," European Journal of Operational Research, Elsevier, vol. 194(1), pages 39-50, April.
    6. Ayşegül Aşkan & Serpil Sayın, 2014. "SVM classification for imbalanced data sets using a multiobjective optimization framework," Annals of Operations Research, Springer, vol. 216(1), pages 191-203, May.
    7. Marie Schmidt & Leo Kroon & Anita Schöbel & Paul Bouman, 2017. "The Travelers Route Choice Problem Under Uncertainty: Dominance Relations Between Strategies," Operations Research, INFORMS, vol. 65(1), pages 184-199, February.
    8. C. Gutiérrez & L. Huerga & E. Köbis & C. Tammer, 2021. "A scalarization scheme for binary relations with applications to set-valued and robust optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 233-256, January.
    9. Marie Schmidt & Leo Kroon & Anita Schöbel & Paul Bouman, 2017. "The Travelers Route Choice Problem Under Uncertainty: Dominance Relations Between Strategies," Operations Research, INFORMS, vol. 65(1), pages 184-199, February.
    10. Stacey Faulkenberg & Margaret Wiecek, 2012. "Generating equidistant representations in biobjective programming," Computational Optimization and Applications, Springer, vol. 51(3), pages 1173-1210, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serpil Say{i}n & Panos Kouvelis, 2005. "The Multiobjective Discrete Optimization Problem: A Weighted Min-Max Two-Stage Optimization Approach and a Bicriteria Algorithm," Management Science, INFORMS, vol. 51(10), pages 1572-1581, October.
    2. Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
    3. Ted Ralphs & Matthew Saltzman & Margaret Wiecek, 2006. "An improved algorithm for solving biobjective integer programs," Annals of Operations Research, Springer, vol. 147(1), pages 43-70, October.
    4. Sylva, John & Crema, Alejandro, 2004. "A method for finding the set of non-dominated vectors for multiple objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 158(1), pages 46-55, October.
    5. Mavrotas, G. & Diakoulaki, D., 1998. "A branch and bound algorithm for mixed zero-one multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 107(3), pages 530-541, June.
    6. Kerstin Dächert & Kathrin Klamroth, 2015. "A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems," Journal of Global Optimization, Springer, vol. 61(4), pages 643-676, April.
    7. Sune Lauth Gadegaard & Lars Relund Nielsen & Matthias Ehrgott, 2019. "Bi-objective Branch-and-Cut Algorithms Based on LP Relaxation and Bound Sets," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 790-804, October.
    8. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
    9. Angelo Aliano Filho & Antonio Carlos Moretti & Margarida Vaz Pato & Washington Alves Oliveira, 2021. "An exact scalarization method with multiple reference points for bi-objective integer linear optimization problems," Annals of Operations Research, Springer, vol. 296(1), pages 35-69, January.
    10. Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
    11. Hadi Charkhgard & Martin Savelsbergh & Masoud Talebian, 2018. "Nondominated Nash points: application of biobjective mixed integer programming," 4OR, Springer, vol. 16(2), pages 151-171, June.
    12. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    13. Julius Bauß & Michael Stiglmayr, 2024. "Augmenting bi-objective branch and bound by scalarization-based information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 85-121, August.
    14. Thomas Stidsen & Kim Allan Andersen & Bernd Dammann, 2014. "A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs," Management Science, INFORMS, vol. 60(4), pages 1009-1032, April.
    15. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    16. Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.
    17. Dächert, Kerstin & Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2017. "Efficient computation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 841-855.
    18. Zhang, Cai Wen & Ong, Hoon Liong, 2004. "Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic," European Journal of Operational Research, Elsevier, vol. 159(3), pages 545-557, December.
    19. Kerstin Dächert & Tino Fleuren & Kathrin Klamroth, 2024. "A simple, efficient and versatile objective space algorithm for multiobjective integer programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 351-384, August.
    20. Minghe Sun, 2005. "Warm-Start Routines for Solving Augmented Weighted Tchebycheff Network Programs in Multiple-Objective Network Programming," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 422-437, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:147:y:2006:i:1:p:71-85:10.1007/s10479-006-0062-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.