IDEAS home Printed from https://ideas.repec.org/a/spr/opmare/v14y2021i1d10.1007_s12063-020-00169-6.html
   My bibliography  Save this article

UTASTAR method and its application in multi-criteria warehouse location selection

Author

Listed:
  • Mohammad Ehsanifar

    (Islamic Azad University)

  • David A. Wood

    (DWA Energy Limited)

  • Arezoo Babaie

    (Islamic Azad University)

Abstract

To effectively manage large industrial companies, decision-making regarding the location of distribution warehouses are particularly important. Locating distribution warehouses is a multi-criteria problem in which the decision-making process is influenced by several quantitative and qualitative criteria. Among the methods proposed to aid location selection, the UTASTAR method is shown to be suitable for clarifying the decision-making process. This method determines single utility functions for each alternative location considered. This aids in the evaluation and comparison of alternative location options based on the preferences of the decision makers expressed in terms of multiple criteria. UTASTAR results enable managers and decision makers to rank the identified options and thereby justify the most suitable option to select as the preferred warehouse location. This research shows the effective application of the UTASTAR method in a case study relating to the selection by the Damghan Steel Company (Iran), from several alternatives, of the best location to construct its central warehouse. The approach proposed offers a new perspective to the problem of warehouse location selection by calculating single utility functions that meaningfully represent the relative values of alternative warehouse locations from a decision makers perspective.

Suggested Citation

  • Mohammad Ehsanifar & David A. Wood & Arezoo Babaie, 2021. "UTASTAR method and its application in multi-criteria warehouse location selection," Operations Management Research, Springer, vol. 14(1), pages 202-215, June.
  • Handle: RePEc:spr:opmare:v:14:y:2021:i:1:d:10.1007_s12063-020-00169-6
    DOI: 10.1007/s12063-020-00169-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12063-020-00169-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12063-020-00169-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfred A. Kuehn & Michael J. Hamburger, 1963. "A Heuristic Program for Locating Warehouses," Management Science, INFORMS, vol. 9(4), pages 643-666, July.
    2. Vlachopoulou, Maro & Silleos, George & Manthou, Vassiliki, 2001. "Geographic information systems in warehouse site selection decisions," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 205-212, May.
    3. Beuthe, Michel & Scannella, Giuseppe, 2001. "Comparative analysis of UTA multicriteria methods," European Journal of Operational Research, Elsevier, vol. 130(2), pages 246-262, April.
    4. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    5. Basheer M. Khumawala, 1972. "An Efficient Branch and Bound Algorithm for the Warehouse Location Problem," Management Science, INFORMS, vol. 18(12), pages 718-731, August.
    6. Korpela, Jukka & Lehmusvaara, Antti & Nisonen, Jukka, 2007. "Warehouse operator selection by combining AHP and DEA methodologies," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 135-142, July.
    7. Canbolat, Yavuz Burak & Chelst, Kenneth & Garg, Nitin, 2007. "Combining decision tree and MAUT for selecting a country for a global manufacturing facility," Omega, Elsevier, vol. 35(3), pages 312-325, June.
    8. M. A. Efroymson & T. L. Ray, 1966. "A Branch-Bound Algorithm for Plant Location," Operations Research, INFORMS, vol. 14(3), pages 361-368, June.
    9. Badri, Masood A., 1999. "Combining the analytic hierarchy process and goal programming for global facility location-allocation problem," International Journal of Production Economics, Elsevier, vol. 62(3), pages 237-248, September.
    10. Fahriye Uysal & Ömür Tosun, 2014. "Selection of sustainable warehouse location in supply chain using the grey approach," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 6(4), pages 338-353.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessio Ishizaka & Philippe Nemery, 2013. "A Multi-Criteria Group Decision Framework for Partner Grouping When Sharing Facilities," Group Decision and Negotiation, Springer, vol. 22(4), pages 773-799, July.
    2. Li‐Lian Gao & E. Powell Robinson, 1992. "A dual‐based optimization procedure for the two‐echelon uncapacitated facility location problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 191-212, March.
    3. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    5. García Cáceres, Rafael Guillermo & Aráoz Durand, Julián Arturo & Gómez, Fernando Palacios, 2009. "Integral analysis method - IAM," European Journal of Operational Research, Elsevier, vol. 192(3), pages 891-903, February.
    6. Rentizelas, Athanasios A. & Tatsiopoulos, Ilias P., 2010. "Locating a bioenergy facility using a hybrid optimization method," International Journal of Production Economics, Elsevier, vol. 123(1), pages 196-209, January.
    7. Harkness, Joseph & ReVelle, Charles, 2003. "Facility location with increasing production costs," European Journal of Operational Research, Elsevier, vol. 145(1), pages 1-13, February.
    8. Mazzola, Joseph B. & Neebe, Alan W., 1999. "Lagrangian-relaxation-based solution procedures for a multiproduct capacitated facility location problem with choice of facility type," European Journal of Operational Research, Elsevier, vol. 115(2), pages 285-299, June.
    9. Yang, Zhongzhen & Yu, Shunan & Notteboom, Theo, 2016. "Airport location in multiple airport regions (MARs): The role of land and airside accessibility," Journal of Transport Geography, Elsevier, vol. 52(C), pages 98-110.
    10. Pierre Hansen & Jack Brimberg & Dragan Urošević & Nenad Mladenović, 2007. "Primal-Dual Variable Neighborhood Search for the Simple Plant-Location Problem," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 552-564, November.
    11. Ozgur Turetken, 2008. "Is your back-up IT infrastructure in a safe location?," Information Systems Frontiers, Springer, vol. 10(3), pages 375-383, July.
    12. Fathali Firoozi, 2008. "Boundary Distributions in Testing Inequality Hypotheses," Working Papers 0046, College of Business, University of Texas at San Antonio.
    13. Hammad, Ahmed W A & Akbarnezhad, Ali & Rey, David, 2017. "Sustainable urban facility location: Minimising noise pollution and network congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 38-59.
    14. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    15. Jesica Armas & Angel A. Juan & Joan M. Marquès & João Pedro Pedroso, 2017. "Solving the deterministic and stochastic uncapacitated facility location problem: from a heuristic to a simheuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1161-1176, October.
    16. Ali Durmuş & Sevkiye Sence Turk, 2014. "Factors Influencing Location Selection of Warehouses at the Intra-Urban Level: Istanbul Case," European Planning Studies, Taylor & Francis Journals, vol. 22(2), pages 268-292, February.
    17. Minghe Sun & Zhen-Yu Chen & Zhi-Ping Fan, 2014. "A Multi-task Multi-kernel Transfer Learning Method for Customer Response Modeling in Social Media," Working Papers 0161mss, College of Business, University of Texas at San Antonio.
    18. Ricardo Hamad & Nicolau Fares Gualda, 2008. "Model for Facilities or Vendors Location in a Global Scale Considering Several Echelons in the Chain," Networks and Spatial Economics, Springer, vol. 8(2), pages 297-307, September.
    19. Alan Murray, 2010. "Advances in location modeling: GIS linkages and contributions," Journal of Geographical Systems, Springer, vol. 12(3), pages 335-354, September.
    20. Amin Akbari & Ronald Pelot & H. A. Eiselt, 2018. "A modular capacitated multi-objective model for locating maritime search and rescue vessels," Annals of Operations Research, Springer, vol. 267(1), pages 3-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opmare:v:14:y:2021:i:1:d:10.1007_s12063-020-00169-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.