IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v98y2019i3d10.1007_s11069-018-3504-8.html
   My bibliography  Save this article

A step towards efficient inference for trends in UK extreme temperatures through distributional linkage between observations and climate model data

Author

Listed:
  • Darmesah Gabda

    (Universiti Malaysia Sabah)

  • Jonathan Tawn

    (Lancaster University)

  • Simon Brown

    (Met Office Hadley Centre)

Abstract

The aim of this paper is to set out a strategy for improving the inference for statistical models for the distribution of annual maxima observed temperature data, with a particular focus on past and future trend estimation. The observed data are on a 25-km grid over the UK. The method involves developing a distributional linkage with models for annual maxima temperatures from an ensemble of regional and global climate numerical models. This formulation enables additional information to be incorporated through the longer records, stronger climate change signals, replications over the ensemble and spatial pooling of information over sites. We find evidence for a common trend between the observed data and the average trend over the ensemble with very limited spatial variation in the trends over the UK. The proposed model, which accounts for all the sources of uncertainty, requires a very high-dimensional parametric fit, so we develop an operational strategy based on simplifying assumptions and discuss what is required to remove these restrictions. With such simplifications, we demonstrate more than an order of magnitude reduction in the local response of extreme temperatures to global mean temperature changes.

Suggested Citation

  • Darmesah Gabda & Jonathan Tawn & Simon Brown, 2019. "A step towards efficient inference for trends in UK extreme temperatures through distributional linkage between observations and climate model data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 1135-1154, September.
  • Handle: RePEc:spr:nathaz:v:98:y:2019:i:3:d:10.1007_s11069-018-3504-8
    DOI: 10.1007/s11069-018-3504-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3504-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3504-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. V. Chavez‐Demoulin & A. C. Davison, 2005. "Generalized additive modelling of sample extremes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 207-222, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. António Rua & Miguel de Carvalho, 2010. "Nonstationary Extremes and the US Business Cycle," Working Papers w201003, Banco de Portugal, Economics and Research Department.
    2. Yun Feng & Weijie Hou & Yuping Song, 2024. "Tail risk forecasting and its application to margin requirements in the commodity futures market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1513-1529, August.
    3. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    4. Ahmad Aboubacrène Ag & Deme El Hadji & Diop Aliou & Girard Stéphane, 2019. "Estimation of the tail-index in a conditional location-scale family of heavy-tailed distributions," Dependence Modeling, De Gruyter, vol. 7(1), pages 394-417, January.
    5. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation in Extreme Value Regression Models of Hedge Fund Tail Risks," Papers 2304.06950, arXiv.org.
    6. Daniela Castro Camilo & Miguel de Carvalho & Jennifer Wadsworth, 2017. "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets," Papers 1709.01198, arXiv.org.
    7. Christoph Marty & Juliette Blanchet, 2012. "Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics," Climatic Change, Springer, vol. 111(3), pages 705-721, April.
    8. Mhalla, Linda & Chavez-Demoulin, Valérie & Naveau, Philippe, 2017. "Non-linear models for extremal dependence," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 49-66.
    9. Setareh Ranjbar & Eva Cantoni & Valérie Chavez‐Demoulin & Giampiero Marra & Rosalba Radice & Katia Jaton, 2022. "Modelling the extremes of seasonal viruses and hospital congestion: The example of flu in a Swiss hospital," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 884-905, August.
    10. Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011. "On kernel smoothing for extremal quantile regression," LIDAM Discussion Papers ISBA 2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Hongyu An & Boping Tian, 2024. "Varying Index Coefficient Model for Tail Index Regression," Mathematics, MDPI, vol. 12(13), pages 1-35, June.
    12. Bousebata, Meryem & Enjolras, Geoffroy & Girard, Stéphane, 2023. "Extreme partial least-squares," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    13. Francesca Biagini & Tobias Huber & Johannes G. Jaspersen & Andrea Mazzon, 2021. "Estimating extreme cancellation rates in life insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 971-1000, December.
    14. Laurini, Fabrizio & Pauli, Francesco, 2009. "Smoothing sample extremes: The mixed model approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3842-3854, September.
    15. Gardes, Laurent & Girard, Stéphane & Lekina, Alexandre, 2010. "Functional nonparametric estimation of conditional extreme quantiles," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 419-433, February.
    16. Abdelaati Daouia & Laurent Gardes & Stéphane Girard & Alexandre Lekina, 2011. "Kernel estimators of extreme level curves," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 311-333, August.
    17. Tong Siu Tung Wong & Wai Keung Li, 2015. "Extreme values identification in regression using a peaks-over-threshold approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 566-576, March.
    18. James W. Taylor & Keming Yu, 2016. "Using auto-regressive logit models to forecast the exceedance probability for financial risk management," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 1069-1092, October.
    19. Rémillard, Bruno & Nasri, Bouchra & Bouezmarni, Taoufik, 2017. "On copula-based conditional quantile estimators," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 14-20.
    20. Emma F. Eastoe & Jonathan A. Tawn, 2009. "Modelling non‐stationary extremes with application to surface level ozone," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 25-45, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:98:y:2019:i:3:d:10.1007_s11069-018-3504-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.