IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v111y2012i3p705-721.html
   My bibliography  Save this article

Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics

Author

Listed:
  • Christoph Marty
  • Juliette Blanchet

Abstract

No abstract is available for this item.

Suggested Citation

  • Christoph Marty & Juliette Blanchet, 2012. "Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics," Climatic Change, Springer, vol. 111(3), pages 705-721, April.
  • Handle: RePEc:spr:climat:v:111:y:2012:i:3:p:705-721
    DOI: 10.1007/s10584-011-0159-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-011-0159-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-011-0159-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Chavez‐Demoulin & A. C. Davison, 2005. "Generalized additive modelling of sample extremes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 207-222, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harald Schellander & Tobias Hell, 2018. "Modeling snow depth extremes in Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1367-1389, December.
    2. Meng Yang & Xiaoxu Sun & Xiaoting Deng & Zhixiong Lu & Tao Wang, 2023. "Extrapolation of Tractor Traction Resistance Load Spectrum and Compilation of Loading Spectrum Based on Optimal Threshold Selection Using a Genetic Algorithm," Agriculture, MDPI, vol. 13(6), pages 1-20, May.
    3. Geoffrey Klein & Yann Vitasse & Christian Rixen & Christoph Marty & Martine Rebetez, 2016. "Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset," Climatic Change, Springer, vol. 139(3), pages 637-649, December.
    4. Jinxin Zhu & Xuerou Weng & Bing Guo & Xueting Zeng & Cong Dong, 2023. "Investigating Extreme Snowfall Changes in China Based on an Ensemble of High-Resolution Regional Climate Models," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    5. Leonardo Stucchi & Claudia Dresti & Daniele Bocchiola, 2023. "Centenary (1930–2023) climate, and snow cover changes in the Western Alps of Italy. The Ossola valley," Climatic Change, Springer, vol. 176(6), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. António Rua & Miguel de Carvalho, 2010. "Nonstationary Extremes and the US Business Cycle," Working Papers w201003, Banco de Portugal, Economics and Research Department.
    2. Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011. "On kernel smoothing for extremal quantile regression," LIDAM Discussion Papers ISBA 2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Francesca Biagini & Tobias Huber & Johannes G. Jaspersen & Andrea Mazzon, 2021. "Estimating extreme cancellation rates in life insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 971-1000, December.
    4. Gardes, Laurent & Girard, Stéphane & Lekina, Alexandre, 2010. "Functional nonparametric estimation of conditional extreme quantiles," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 419-433, February.
    5. Tong Siu Tung Wong & Wai Keung Li, 2015. "Extreme values identification in regression using a peaks-over-threshold approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 566-576, March.
    6. Stan Tendijck & Philip Jonathan & David Randell & Jonathan Tawn, 2024. "Temporal evolution of the extreme excursions of multivariate k$$ k $$th order Markov processes with application to oceanographic data," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    7. M. Carvalho & S. Pereira & P. Pereira & P. Zea Bermudez, 2022. "An Extreme Value Bayesian Lasso for the Conditional Left and Right Tails," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 222-239, June.
    8. Darmesah Gabda & Jonathan Tawn & Simon Brown, 2019. "A step towards efficient inference for trends in UK extreme temperatures through distributional linkage between observations and climate model data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 1135-1154, September.
    9. M. de Carvalho & K. F. Turkman & A. Rua, 2013. "Dynamic threshold modelling and the US business cycle," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 535-550, August.
    10. Dimitrios Koutmos & Wang Chun Wei, 2023. "Nowcasting bitcoin’s crash risk with order imbalance," Review of Quantitative Finance and Accounting, Springer, vol. 61(1), pages 125-154, July.
    11. Evandro Konzen & Cláudia Neves & Philip Jonathan, 2021. "Modeling nonstationary extremes of storm severity: Comparing parametric and semiparametric inference," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    12. Ross Towe & Jonathan Tawn & Emma Eastoe & Rob Lamb, 2020. "Modelling the Clustering of Extreme Events for Short-Term Risk Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 32-53, March.
    13. Zhang, Qingzhao & Li, Deyuan & Wang, Hansheng, 2013. "A note on tail dependence regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 163-172.
    14. Yaolan Ma & Bo Wei & Wei Huang, 2020. "A nonparametric estimator for the conditional tail index of Pareto-type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 17-44, January.
    15. Gardes, Laurent & Girard, Stéphane, 2008. "A moving window approach for nonparametric estimation of the conditional tail index," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2368-2388, November.
    16. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    17. Ahmad Aboubacrène Ag & Deme El Hadji & Diop Aliou & Girard Stéphane, 2019. "Estimation of the tail-index in a conditional location-scale family of heavy-tailed distributions," Dependence Modeling, De Gruyter, vol. 7(1), pages 394-417, January.
    18. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation In Extreme Value Regression Models Of Hedge Fund Tail Risks," Working Papers hal-04090916, HAL.
    19. Daniela Castro Camilo & Miguel de Carvalho & Jennifer Wadsworth, 2017. "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets," Papers 1709.01198, arXiv.org.
    20. Mhalla, Linda & Chavez-Demoulin, Valérie & Naveau, Philippe, 2017. "Non-linear models for extremal dependence," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 49-66.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:111:y:2012:i:3:p:705-721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.